org.apache.spark.sql.execution.streaming.IncrementalExecution.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution.streaming
import java.util.UUID
import java.util.concurrent.atomic.AtomicInteger
import org.apache.spark.internal.Logging
import org.apache.spark.sql.{AnalysisException, SparkSession, Strategy}
import org.apache.spark.sql.catalyst.QueryPlanningTracker
import org.apache.spark.sql.catalyst.expressions.{CurrentBatchTimestamp, ExpressionWithRandomSeed}
import org.apache.spark.sql.catalyst.plans.logical._
import org.apache.spark.sql.catalyst.plans.physical.{AllTuples, ClusteredDistribution, HashPartitioning, SinglePartition}
import org.apache.spark.sql.catalyst.rules.Rule
import org.apache.spark.sql.execution.{LeafExecNode, LocalLimitExec, QueryExecution, SparkPlan, SparkPlanner, UnaryExecNode}
import org.apache.spark.sql.execution.exchange.{ShuffleExchangeExec, ShuffleExchangeLike}
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.streaming.OutputMode
import org.apache.spark.util.Utils
/**
* A variant of [[QueryExecution]] that allows the execution of the given [[LogicalPlan]]
* plan incrementally. Possibly preserving state in between each execution.
*/
class IncrementalExecution(
sparkSession: SparkSession,
logicalPlan: LogicalPlan,
val outputMode: OutputMode,
val checkpointLocation: String,
val queryId: UUID,
val runId: UUID,
val currentBatchId: Long,
val offsetSeqMetadata: OffsetSeqMetadata)
extends QueryExecution(sparkSession, logicalPlan) with Logging {
// Modified planner with stateful operations.
override val planner: SparkPlanner = new SparkPlanner(
sparkSession,
sparkSession.sessionState.conf,
sparkSession.sessionState.experimentalMethods) {
override def strategies: Seq[Strategy] =
extraPlanningStrategies ++
sparkSession.sessionState.planner.strategies
override def extraPlanningStrategies: Seq[Strategy] =
StreamingJoinStrategy ::
StatefulAggregationStrategy ::
FlatMapGroupsWithStateStrategy ::
StreamingRelationStrategy ::
StreamingDeduplicationStrategy ::
StreamingGlobalLimitStrategy(outputMode) :: Nil
}
private[sql] val numStateStores = offsetSeqMetadata.conf.get(SQLConf.SHUFFLE_PARTITIONS.key)
.map(SQLConf.SHUFFLE_PARTITIONS.valueConverter)
.getOrElse(sparkSession.sessionState.conf.numShufflePartitions)
/**
* See [SPARK-18339]
* Walk the optimized logical plan and replace CurrentBatchTimestamp
* with the desired literal
*/
override
lazy val optimizedPlan: LogicalPlan = executePhase(QueryPlanningTracker.OPTIMIZATION) {
sparkSession.sessionState.optimizer.executeAndTrack(withCachedData,
tracker) transformAllExpressions {
case ts @ CurrentBatchTimestamp(timestamp, _, _) =>
logInfo(s"Current batch timestamp = $timestamp")
ts.toLiteral
case e: ExpressionWithRandomSeed => e.withNewSeed(Utils.random.nextLong())
}
}
/**
* Records the current id for a given stateful operator in the query plan as the `state`
* preparation walks the query plan.
*/
private val statefulOperatorId = new AtomicInteger(0)
/** Get the state info of the next stateful operator */
private def nextStatefulOperationStateInfo(): StatefulOperatorStateInfo = {
StatefulOperatorStateInfo(
checkpointLocation,
runId,
statefulOperatorId.getAndIncrement(),
currentBatchId,
numStateStores)
}
/** Locates save/restore pairs surrounding aggregation. */
val state = new Rule[SparkPlan] {
/**
* Ensures that this plan DOES NOT have any stateful operation in it whose pipelined execution
* depends on this plan. In other words, this function returns true if this plan does
* have a narrow dependency on a stateful subplan.
*/
private def hasNoStatefulOp(plan: SparkPlan): Boolean = {
var statefulOpFound = false
def findStatefulOp(planToCheck: SparkPlan): Unit = {
planToCheck match {
case s: StatefulOperator =>
statefulOpFound = true
case e: ShuffleExchangeLike =>
// Don't search recursively any further as any child stateful operator as we
// are only looking for stateful subplans that this plan has narrow dependencies on.
case p: SparkPlan =>
p.children.foreach(findStatefulOp)
}
}
findStatefulOp(plan)
!statefulOpFound
}
override def apply(plan: SparkPlan): SparkPlan = plan transform {
case StateStoreSaveExec(keys, None, None, None, stateFormatVersion,
UnaryExecNode(agg,
StateStoreRestoreExec(_, None, _, child))) =>
val aggStateInfo = nextStatefulOperationStateInfo
StateStoreSaveExec(
keys,
Some(aggStateInfo),
Some(outputMode),
Some(offsetSeqMetadata.batchWatermarkMs),
stateFormatVersion,
agg.withNewChildren(
StateStoreRestoreExec(
keys,
Some(aggStateInfo),
stateFormatVersion,
child) :: Nil))
case StreamingDeduplicateExec(keys, child, None, None) =>
StreamingDeduplicateExec(
keys,
child,
Some(nextStatefulOperationStateInfo),
Some(offsetSeqMetadata.batchWatermarkMs))
case m: FlatMapGroupsWithStateExec =>
m.copy(
stateInfo = Some(nextStatefulOperationStateInfo),
batchTimestampMs = Some(offsetSeqMetadata.batchTimestampMs),
eventTimeWatermark = Some(offsetSeqMetadata.batchWatermarkMs))
case j: StreamingSymmetricHashJoinExec =>
j.copy(
stateInfo = Some(nextStatefulOperationStateInfo),
eventTimeWatermark = Some(offsetSeqMetadata.batchWatermarkMs),
stateWatermarkPredicates =
StreamingSymmetricHashJoinHelper.getStateWatermarkPredicates(
j.left.output, j.right.output, j.leftKeys, j.rightKeys, j.condition.full,
Some(offsetSeqMetadata.batchWatermarkMs)))
case l: StreamingGlobalLimitExec =>
l.copy(
stateInfo = Some(nextStatefulOperationStateInfo),
outputMode = Some(outputMode))
case StreamingLocalLimitExec(limit, child) if hasNoStatefulOp(child) =>
// Optimize limit execution by replacing StreamingLocalLimitExec (consumes the iterator
// completely) to LocalLimitExec (does not consume the iterator) when the child plan has
// no stateful operator (i.e., consuming the iterator is not needed).
LocalLimitExec(limit, child)
}
}
override def preparations: Seq[Rule[SparkPlan]] = state +: super.preparations
/** No need assert supported, as this check has already been done */
override def assertSupported(): Unit = { }
/**
* Should the MicroBatchExecution run another batch based on this execution and the current
* updated metadata.
*/
def shouldRunAnotherBatch(newMetadata: OffsetSeqMetadata): Boolean = {
executedPlan.collect {
case p: StateStoreWriter => p.shouldRunAnotherBatch(newMetadata)
}.exists(_ == true)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy