ch.slf.FFTRealOneSided Maven / Gradle / Ivy
The newest version!
/**
* Global Sensor Networks (GSN) Source Code
* Copyright (c) 2006-2016, Ecole Polytechnique Federale de Lausanne (EPFL)
*
* This file is part of GSN.
*
* GSN is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GSN is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GSN. If not, see .
*
* File: src/ch/slf/FFTRealOneSided.java
*
* @author Timotee Maret
*
*/
package ch.slf;
import java.io.Serializable;
import org.apache.commons.math.MathException;
import org.apache.commons.math.complex.Complex;
import org.apache.commons.math.transform.FastFourierTransformer;
import org.slf4j.LoggerFactory;
import ch.epfl.gsn.beans.DataField;
import ch.epfl.gsn.beans.DataTypes;
import ch.epfl.gsn.beans.StreamElement;
import org.slf4j.Logger;
/**
*
* This Virtual Sensor computes the FFT over an array of data.
* The input array must contain a power of 2 elements. If any other number of elements is used, the array will be zero-padded to the next power of 2 elements.
*
*
* The output format is a 1 sided real FFT normalised using 1/sqrt(N).
* This algorithm uses the Cooley-Tukey FFT method.
* The algorithm returns N/2 +1 points where the first point is the DC component.
*
*
* This Virtual Sensor uses the free Apache Math Library for computation.
* Have a look to Apache Math Library
* for its documentation.
*
*/
public class FFTRealOneSided extends WindowAwareVS {
private static final String DF = "DF";
private static final String VALUES = "VALS";
private static final DataField [] outputStructure = new DataField[] {
new DataField(DF, DataTypes.DOUBLE_NAME),
new DataField(VALUES, "BINARY:text/plain")
};
private static transient Logger logger = LoggerFactory.getLogger ( FFTRealOneSided.class );
private static FastFourierTransformer fft;
private int fft_size;
public boolean init() {
try {
fft_size = getPredicateValueAsIntWithException("window-size");
fft = new FastFourierTransformer () ;
if (! FastFourierTransformer.isPowerOf2(fft_size)) {
logger.error("The window size >" + fft_size + "< is not a power of 2.");
return false;
}
}catch (Exception e) {
logger.error(e.getMessage(),e);
return false;
}
return true;
}
/**
* @param values A two dimensional array that contains in first dimension (values[])
* the differents steps, and in the second dimension (value[step][]) the different
* measures for this step.
* @param timestamps An array that contains the timestamps in milli seconds at every
* step.
* @return
*/
public void process(double [] values , long[] timestampsInMSec) {
if (logger.isDebugEnabled()) {
logger.debug("INPUT FFT DATA");
for (int i = 0 ; i < values.length ; i++) {
logger.debug(values[i] + "\n");
}
}
int windowSize = timestampsInMSec.length;
logger.debug("Window Size: " + windowSize);
long deltaTimeStampInSec = (timestampsInMSec[timestampsInMSec.length - 1] - timestampsInMSec[0]) / 1000;
logger.debug("Delta Time Stamp in s: " + deltaTimeStampInSec);
double sampling_rate = ((double)windowSize / (double)deltaTimeStampInSec);
logger.debug("Sampling Rate: " + sampling_rate);
double df = 1 / (double)deltaTimeStampInSec;
logger.debug("df: " + df);
int nbOfPointsToReturn = (windowSize / 2) + 1;
logger.debug("Number of points to return: " + nbOfPointsToReturn);
long middleTimeStamp = timestampsInMSec[0] + ((deltaTimeStampInSec / 2) * 1000);
Complex[] fftResult = null;
try {
fftResult = fft.transform2(values);
double[] realPartFftResult = new double [nbOfPointsToReturn] ;
for (int i = 0 ; i < realPartFftResult.length ; i++) {
realPartFftResult[i] = fftResult[i].getReal();
}
//
Serializable[] dataOut = new Serializable[2];
// df
dataOut[0] = df;
// data
StringBuilder sb = new StringBuilder();
sb.append(realPartFftResult[0]);
for (int i = 1 ; i < realPartFftResult.length ; i++) {
sb.append("," + realPartFftResult[i]);
}
dataOut[1] = sb.toString().getBytes();
//
StreamElement se = new StreamElement (outputStructure, dataOut, middleTimeStamp);
logger.debug("FFT StreamElement produced: " + se);
dataProduced( se );
} catch (IllegalArgumentException e) {
logger.error("Unable to compute the FFT: " + e.getMessage());
}
catch (Exception e) {
logger.error("Unable to compute the FFT: " + e.getMessage());
}
}
}