All Downloads are FREE. Search and download functionalities are using the official Maven repository.

ch.obermuhlner.math.big.internal.SeriesCalculator Maven / Gradle / Ivy

There is a newer version: 2.3.2
Show newest version
package ch.obermuhlner.math.big.internal;

import static java.math.BigDecimal.ONE;

import java.math.BigDecimal;
import java.math.MathContext;
import java.util.ArrayList;
import java.util.List;

import ch.obermuhlner.math.big.BigRational;

/**
 * Utility class to calculate taylor series efficiently until the maximum error (as defined by the precision in the {@link MathContext} is reached.
 * 
 * 

Stores the factors of the taylor series terms so that future calculations will be faster.

*/ public abstract class SeriesCalculator { private boolean calculateInPairs; private List factors = new ArrayList<>(); /** * Constructs a {@link SeriesCalculator} that calculates single terms. */ protected SeriesCalculator() { this(false); } /** * Constructs a {@link SeriesCalculator} with control over whether the sum terms are calculated in pairs. * *

Calculation of pairs is useful for taylor series where the terms alternate the sign. * In these cases it is more efficient to calculate two terms at once check then whether the acceptable error has been reached.

* * @param calculateInPairs true to calculate the terms in pairs, false to calculate single terms */ protected SeriesCalculator(boolean calculateInPairs) { this.calculateInPairs = calculateInPairs; } /** * Calculates the series for the specified value x and the precision defined in the {@link MathContext}. * * @param x the value x * @param mathContext the {@link MathContext} * @return the calculated result */ public BigDecimal calculate(BigDecimal x, MathContext mathContext) { BigDecimal acceptableError = ONE.movePointLeft(mathContext.getPrecision() + 1); PowerIterator powerIterator = createPowerIterator(x, mathContext); BigDecimal sum = BigDecimal.ZERO; BigDecimal step; int i = 0; do { BigRational factor = getFactor(i); BigDecimal xToThePower = powerIterator.getCurrentPower(); powerIterator.calculateNextPower(); step = factor.getNumerator().multiply(xToThePower, mathContext).divide(factor.getDenominator(), mathContext); i++; if (calculateInPairs) { xToThePower = powerIterator.getCurrentPower(); powerIterator.calculateNextPower(); factor = getFactor(i); BigDecimal step2 = factor.getNumerator().multiply(xToThePower, mathContext).divide(factor.getDenominator(), mathContext); step = step.add(step2, mathContext); i++; } sum = sum.add(step, mathContext); //System.out.println(sum + " " + step); } while (step.abs().compareTo(acceptableError) > 0); return sum.round(mathContext); } /** * Creates the {@link PowerIterator} used for this series. * * @param x the value x * @param mathContext the {@link MathContext} * @return the {@link PowerIterator} */ protected abstract PowerIterator createPowerIterator(BigDecimal x, MathContext mathContext); /** * Returns the factor of the term with specified index. * * @param index the index (starting with 0) * @return the factor of the specified term */ protected BigRational getFactor(int index) { while (factors.size() <= index) { BigRational factor = getCurrentFactor(); factors.add(factor); calculateNextFactor(); } return factors.get(index); } /** * Returns the factor of the highest term already calculated. *

When called for the first time will return the factor of the first term (index 0).

*

After this call the method {@link #calculateNextFactor()} will be called to prepare for the next term.

* * @return the factor of the highest term */ protected abstract BigRational getCurrentFactor(); /** * Calculates the factor of the next term. */ protected abstract void calculateNextFactor(); }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy