All Downloads are FREE. Search and download functionalities are using the official Maven repository.

ch.obermuhlner.math.big.BigComplexMath Maven / Gradle / Ivy

There is a newer version: 2.3.2
Show newest version
package ch.obermuhlner.math.big;

import static ch.obermuhlner.math.big.BigComplex.I;

import java.math.BigDecimal;
import java.math.MathContext;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

/**
 * Provides advanced functions operating on {@link BigComplex}s.
 */
public class BigComplexMath {

	private static final BigDecimal TWO = BigDecimal.valueOf(2);

	/**
	 * Calculates the reciprocal of the given complex number using the specified {@link MathContext}.
	 *
	 * @param x the complex number to calculate the reciprocal
	 * @param mathContext the {@link MathContext} used to calculate the result
	 * @return the calculated {@link BigComplex} result
	 * @see BigComplex#reciprocal(MathContext)
	 */
	public static BigComplex reciprocal(BigComplex x, MathContext mathContext) {
		return x.reciprocal(mathContext);
	}

	/**
	 * Calculates the conjugate of the given complex number using the specified {@link MathContext}.
	 *
	 * @param x the complex number to calculate the conjugate
	 * @return the calculated {@link BigComplex} result
	 * @see BigComplex#conjugate()
	 */
	public static BigComplex conjugate(BigComplex x) {
		return x.conjugate();
	}

	/**
	 * Calculates the absolute value (also known as magnitude, length or radius) of the given complex number using the specified {@link MathContext}.
	 *
	 * @param x the complex number to calculate the absolute value
	 * @param mathContext the {@link MathContext} used to calculate the result
	 * @return the calculated {@link BigComplex} result
	 * @see BigComplex#abs(MathContext)
	 */
	public static BigDecimal abs(BigComplex x, MathContext mathContext) {
		return x.abs(mathContext);
	}

	/**
	 * Calculates the square of the absolute value (also known as magnitude, length or radius) of the given complex number using the specified {@link MathContext}.
	 *
	 * @param x the complex number to calculate the square of the absolute value
	 * @param mathContext the {@link MathContext} used to calculate the result
	 * @return the calculated {@link BigComplex} result
	 * @see BigComplex#absSquare(MathContext)
	 */
	public static BigDecimal absSquare(BigComplex x, MathContext mathContext) {
		return x.absSquare(mathContext);
	}

	/**
	 * Calculates the angle in radians of the given complex number using the specified {@link MathContext}.
	 *
	 * @param x the complex number to calculate the angle
	 * @param mathContext the {@link MathContext} used to calculate the result
	 * @return the calculated {@link BigComplex} angle in radians
	 * @see BigComplex#angle(MathContext)
	 */
	public static BigDecimal angle(BigComplex x, MathContext mathContext) {
		return x.angle(mathContext);
	}

	/**
	 * Calculates the factorial of the specified {@link BigComplex}.
	 *
	 * 

This implementation uses * Spouge's approximation * to calculate the factorial for non-integer values.

* *

This involves calculating a series of constants that depend on the desired precision. * Since this constant calculation is quite expensive (especially for higher precisions), * the constants for a specific precision will be cached * and subsequent calls to this method with the same precision will be much faster.

* *

It is therefore recommended to do one call to this method with the standard precision of your application during the startup phase * and to avoid calling it with many different precisions.

* *

See: Wikipedia: Factorial - Extension of factorial to non-integer values of argument

* * @param x the {@link BigComplex} * @param mathContext the {@link MathContext} used for the result * @return the factorial {@link BigComplex} * @throws ArithmeticException if x is a negative integer value (-1, -2, -3, ...) * @see BigDecimalMath#factorial(BigDecimal, MathContext) * @see #gamma(BigComplex, MathContext) */ public static BigComplex factorial(BigComplex x, MathContext mathContext) { if (x.isReal() && BigDecimalMath.isIntValue(x.re)) { return BigComplex.valueOf(BigDecimalMath.factorial(x.re.intValueExact()).round(mathContext)); } // https://en.wikipedia.org/wiki/Spouge%27s_approximation MathContext mc = new MathContext(mathContext.getPrecision() * 2, mathContext.getRoundingMode()); int a = mathContext.getPrecision() * 13 / 10; List constants = BigDecimalMath.getSpougeFactorialConstants(a); BigDecimal bigA = BigDecimal.valueOf(a); boolean negative = false; BigComplex factor = BigComplex.valueOf(constants.get(0)); for (int k = 1; k < a; k++) { BigDecimal bigK = BigDecimal.valueOf(k); factor = factor.add(BigComplex.valueOf(constants.get(k)).divide(x.add(bigK), mc), mc); negative = !negative; } BigComplex result = pow(x.add(bigA, mc), x.add(BigDecimal.valueOf(0.5), mc), mc); result = result.multiply(exp(x.negate().subtract(bigA, mc), mc), mc); result = result.multiply(factor, mc); return result.round(mathContext); } /** * Calculates the gamma function of the specified {@link BigComplex}. * *

This implementation uses {@link #factorial(BigComplex, MathContext)} internally, * therefore the performance implications described there apply also for this method. * *

See: Wikipedia: Gamma function

* * @param x the {@link BigComplex} * @param mathContext the {@link MathContext} used for the result * @return the gamma {@link BigComplex} * @throws ArithmeticException if x-1 is a negative integer value (-1, -2, -3, ...) * @see BigDecimalMath#gamma(BigDecimal, MathContext) * @see #factorial(BigComplex, MathContext) */ public static BigComplex gamma(BigComplex x, MathContext mathContext) { return factorial(x.subtract(BigComplex.ONE), mathContext); } /** * Calculates the natural exponent of {@link BigComplex} x (ex) in the complex domain. * *

See: Wikipedia: Exponent (Complex plane)

* * @param x the {@link BigComplex} to calculate the exponent for * @param mathContext the {@link MathContext} used for the result * @return the calculated exponent {@link BigComplex} with the precision specified in the mathContext */ public static BigComplex exp(BigComplex x, MathContext mathContext) { MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode()); BigDecimal expRe = BigDecimalMath.exp(x.re, mc); return BigComplex.valueOf( expRe.multiply(BigDecimalMath.cos(x.im, mc), mc).round(mathContext), expRe.multiply(BigDecimalMath.sin(x.im, mc), mc)).round(mathContext); } /** * Calculates the sine (sinus) of {@link BigComplex} x in the complex domain. * *

See: Wikipedia: Sine (Sine with a complex argument)

* * @param x the {@link BigComplex} to calculate the sine for * @param mathContext the {@link MathContext} used for the result * @return the calculated sine {@link BigComplex} with the precision specified in the mathContext */ public static BigComplex sin(BigComplex x, MathContext mathContext) { MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode()); return BigComplex.valueOf( BigDecimalMath.sin(x.re, mc).multiply(BigDecimalMath.cosh(x.im, mc), mc).round(mathContext), BigDecimalMath.cos(x.re, mc).multiply(BigDecimalMath.sinh(x.im, mc), mc).round(mathContext)); } /** * Calculates the cosine (cosinus) of {@link BigComplex} x in the complex domain. * * @param x the {@link BigComplex} to calculate the cosine for * @param mathContext the {@link MathContext} used for the result * @return the calculated cosine {@link BigComplex} with the precision specified in the mathContext */ public static BigComplex cos(BigComplex x, MathContext mathContext) { MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode()); return BigComplex.valueOf( BigDecimalMath.cos(x.re, mc).multiply(BigDecimalMath.cosh(x.im, mc), mc).round(mathContext), BigDecimalMath.sin(x.re, mc).multiply(BigDecimalMath.sinh(x.im, mc), mc).negate().round(mathContext)); } // // http://scipp.ucsc.edu/~haber/archives/physics116A10/arc_10.pdf /** * Calculates the tangens of {@link BigComplex} x in the complex domain. * * @param x the {@link BigComplex} to calculate the tangens for * @param mathContext the {@link MathContext} used for the result * @return the calculated tangens {@link BigComplex} with the precision specified in the mathContext */ public static BigComplex tan(BigComplex x, MathContext mathContext) { MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode()); return sin(x, mc).divide(cos(x, mc), mc).round(mathContext); } /** * Calculates the arc tangens (inverted tangens) of {@link BigComplex} x in the complex domain. * *

See: Wikipedia: Inverse trigonometric functions (Extension to complex plane)

* * @param x the {@link BigComplex} to calculate the arc tangens for * @param mathContext the {@link MathContext} used for the result * @return the calculated arc tangens {@link BigComplex} with the precision specified in the mathContext */ public static BigComplex atan(BigComplex x, MathContext mathContext) { MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode()); return log(I.subtract(x, mc).divide(I.add(x, mc), mc), mc).divide(I, mc).divide(TWO, mc).round(mathContext); } /** * Calculates the arc cotangens (inverted cotangens) of {@link BigComplex} x in the complex domain. * *

See: Wikipedia: Inverse trigonometric functions (Extension to complex plane)

* * @param x the {@link BigComplex} to calculate the arc cotangens for * @param mathContext the {@link MathContext} used for the result * @return the calculated arc cotangens {@link BigComplex} with the precision specified in the mathContext */ public static BigComplex acot(BigComplex x, MathContext mathContext) { MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode()); return log(x.add(I, mc).divide(x.subtract(I, mc), mc), mc).divide(I, mc).divide(TWO, mc).round(mathContext); } /** * Calculates the arc sine (inverted sine) of {@link BigComplex} x in the complex domain. * *

See: Wikipedia: Inverse trigonometric functions (Extension to complex plane)

* * @param x the {@link BigComplex} to calculate the arc sine for * @param mathContext the {@link MathContext} used for the result * @return the calculated arc sine {@link BigComplex} with the precision specified in the mathContext */ public static BigComplex asin(BigComplex x, MathContext mathContext) { MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode()); return I.negate().multiply(log(I.multiply(x, mc).add(sqrt(BigComplex.ONE.subtract(x.multiply(x, mc), mc), mc), mc), mc), mc).round(mathContext); } /** * Calculates the arc cosine (inverted cosine) of {@link BigComplex} x in the complex domain. * *

See: Wikipedia: Inverse trigonometric functions (Extension to complex plane)

* * @param x the {@link BigComplex} to calculate the arc cosine for * @param mathContext the {@link MathContext} used for the result * @return the calculated arc cosine {@link BigComplex} with the precision specified in the mathContext */ public static BigComplex acos(BigComplex x, MathContext mathContext) { MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode()); return I.negate().multiply(log(x.add(sqrt(x.multiply(x, mc).subtract(BigComplex.ONE, mc), mc), mc), mc), mc).round(mathContext); } /** * Calculates the square root of {@link BigComplex} x in the complex domain (√x). * *

See Wikipedia: Square root (Square root of an imaginary number)

* * @param x the {@link BigComplex} to calculate the square root for * @param mathContext the {@link MathContext} used for the result * @return the calculated square root {@link BigComplex} with the precision specified in the mathContext */ public static BigComplex sqrt(BigComplex x, MathContext mathContext) { // https://math.stackexchange.com/questions/44406/how-do-i-get-the-square-root-of-a-complex-number MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode()); BigDecimal magnitude = x.abs(mc); BigComplex a = x.add(magnitude, mc); return a.divide(a.abs(mc), mc).multiply(BigDecimalMath.sqrt(magnitude, mc), mc).round(mathContext); } /** * Calculates the natural logarithm of {@link BigComplex} x in the complex domain. * *

See: Wikipedia: Complex logarithm

* * @param x the {@link BigComplex} to calculate the natural logarithm for * @param mathContext the {@link MathContext} used for the result * @return the calculated natural logarithm {@link BigComplex} with the precision specified in the mathContext */ public static BigComplex log(BigComplex x, MathContext mathContext) { // https://en.wikipedia.org/wiki/Complex_logarithm MathContext mc1 = new MathContext(mathContext.getPrecision() + 20, mathContext.getRoundingMode()); MathContext mc2 = new MathContext(mathContext.getPrecision() + 5, mathContext.getRoundingMode()); return BigComplex.valueOf( BigDecimalMath.log(x.abs(mc1), mc1).round(mathContext), x.angle(mc2)).round(mathContext); } /** * Calculates {@link BigComplex} x to the power of long y (xy). * *

The implementation tries to minimize the number of multiplications of {@link BigComplex x} (using squares whenever possible).

* *

See: Wikipedia: Exponentiation - efficient computation

* * @param x the {@link BigComplex} value to take to the power * @param y the long value to serve as exponent * @param mathContext the {@link MathContext} used for the result * @return the calculated x to the power of y with the precision specified in the mathContext */ public static BigComplex pow(BigComplex x, long y, MathContext mathContext) { MathContext mc = new MathContext(mathContext.getPrecision() + 10, mathContext.getRoundingMode()); if (y < 0) { return BigComplex.ONE.divide(pow(x, -y, mc), mc).round(mathContext); } BigComplex result = BigComplex.ONE; while (y > 0) { if ((y & 1) == 1) { // odd exponent -> multiply result with x result = result.multiply(x, mc); y -= 1; } if (y > 0) { // even exponent -> square x x = x.multiply(x, mc); } y >>= 1; } return result.round(mathContext); } /** * Calculates {@link BigComplex} x to the power of {@link BigDecimal} y (xy). * * @param x the {@link BigComplex} value to take to the power * @param y the {@link BigDecimal} value to serve as exponent * @param mathContext the {@link MathContext} used for the result * @return the calculated x to the power of y with the precision specified in the mathContext */ public static BigComplex pow(BigComplex x, BigDecimal y, MathContext mathContext) { MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode()); BigDecimal angleTimesN = x.angle(mc).multiply(y, mc); return BigComplex.valueOf( BigDecimalMath.cos(angleTimesN, mc), BigDecimalMath.sin(angleTimesN, mc)).multiply(BigDecimalMath.pow(x.abs(mc), y, mc), mc).round(mathContext); } /** * Calculates {@link BigComplex} x to the power of {@link BigComplex} y (xy). * * @param x the {@link BigComplex} value to take to the power * @param y the {@link BigComplex} value to serve as exponent * @param mathContext the {@link MathContext} used for the result * @return the calculated x to the power of y with the precision specified in the mathContext */ public static BigComplex pow(BigComplex x, BigComplex y, MathContext mathContext) { MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode()); return exp(y.multiply(log(x, mc), mc), mc).round(mathContext); } /** * Calculates the {@link BigDecimal} n'th root of {@link BigComplex} x (n√x). * *

See Wikipedia: Square root

* @param x the {@link BigComplex} value to calculate the n'th root * @param n the {@link BigDecimal} defining the root * @param mathContext the {@link MathContext} used for the result * * @return the calculated n'th root of x with the precision specified in the mathContext */ public static BigComplex root(BigComplex x, BigDecimal n, MathContext mathContext) { MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode()); return pow(x, BigDecimal.ONE.divide(n, mc), mc).round(mathContext); } /** * Calculates the {@link BigComplex} n'th root of {@link BigComplex} x (n√x). * *

See Wikipedia: Square root

* @param x the {@link BigComplex} value to calculate the n'th root * @param n the {@link BigComplex} defining the root * @param mathContext the {@link MathContext} used for the result * * @return the calculated n'th root of x with the precision specified in the mathContext */ public static BigComplex root(BigComplex x, BigComplex n, MathContext mathContext) { MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode()); return pow(x, BigComplex.ONE.divide(n, mc), mc).round(mathContext); } // TODO add root() for the k'th root - https://math.stackexchange.com/questions/322481/principal-nth-root-of-a-complex-number }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy