ch.obermuhlner.math.big.internal.SeriesCalculator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of big-math Show documentation
Show all versions of big-math Show documentation
Math functions for BigDecimal.
package ch.obermuhlner.math.big.internal;
import static java.math.BigDecimal.ONE;
import java.math.BigDecimal;
import java.math.MathContext;
import java.util.ArrayList;
import java.util.List;
import ch.obermuhlner.math.big.BigRational;
/**
* Utility class to calculate taylor series efficiently until the maximum error (as defined by the precision in the {@link MathContext} is reached.
*
* Stores the factors of the taylor series terms so that future calculations will be faster.
*/
public abstract class SeriesCalculator {
private boolean calculateInPairs;
private List factors = new ArrayList<>();
/**
* Constructs a {@link SeriesCalculator} that calculates single terms.
*/
protected SeriesCalculator() {
this(false);
}
/**
* Constructs a {@link SeriesCalculator} with control over whether the sum terms are calculated in pairs.
*
* Calculation of pairs is useful for taylor series where the terms alternate the sign.
* In these cases it is more efficient to calculate two terms at once check then whether the acceptable error has been reached.
*
* @param calculateInPairs true
to calculate the terms in pairs, false
to calculate single terms
*/
protected SeriesCalculator(boolean calculateInPairs) {
this.calculateInPairs = calculateInPairs;
}
/**
* Calculates the series for the specified value x and the precision defined in the {@link MathContext}.
*
* @param x the value x
* @param mathContext the {@link MathContext}
* @return the calculated result
*/
public BigDecimal calculate(BigDecimal x, MathContext mathContext) {
BigDecimal acceptableError = ONE.movePointLeft(mathContext.getPrecision() + 1);
PowerIterator powerIterator = createPowerIterator(x, mathContext);
BigDecimal sum = BigDecimal.ZERO;
BigDecimal step;
int i = 0;
do {
BigRational factor = getFactor(i);
BigDecimal xToThePower = powerIterator.getCurrentPower();
powerIterator.calculateNextPower();
step = factor.getNumerator().multiply(xToThePower, mathContext).divide(factor.getDenominator(), mathContext);
i++;
if (calculateInPairs) {
xToThePower = powerIterator.getCurrentPower();
powerIterator.calculateNextPower();
factor = getFactor(i);
BigDecimal step2 = factor.getNumerator().multiply(xToThePower, mathContext).divide(factor.getDenominator(), mathContext);
step = step.add(step2, mathContext);
i++;
}
sum = sum.add(step, mathContext);
//System.out.println(sum + " " + step);
} while (step.abs().compareTo(acceptableError) > 0);
return sum.round(mathContext);
}
/**
* Creates the {@link PowerIterator} used for this series.
*
* @param x the value x
* @param mathContext the {@link MathContext}
* @return the {@link PowerIterator}
*/
protected abstract PowerIterator createPowerIterator(BigDecimal x, MathContext mathContext);
/**
* Returns the factor of the term with specified index.
*
* @param index the index (starting with 0)
* @return the factor of the specified term
*/
protected BigRational getFactor(int index) {
while (factors.size() <= index) {
BigRational factor = getCurrentFactor();
factors.add(factor);
calculateNextFactor();
}
return factors.get(index);
}
/**
* Returns the factor of the highest term already calculated.
* When called for the first time will return the factor of the first term (index 0).
* After this call the method {@link #calculateNextFactor()} will be called to prepare for the next term.
*
* @return the factor of the highest term
*/
protected abstract BigRational getCurrentFactor();
/**
* Calculates the factor of the next term.
*/
protected abstract void calculateNextFactor();
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy