ch.obermuhlner.math.big.BigDecimalMath Maven / Gradle / Ivy
package ch.obermuhlner.math.big;
import static java.math.BigDecimal.ONE;
import static java.math.BigDecimal.TEN;
import static java.math.BigDecimal.ZERO;
import static java.math.BigDecimal.valueOf;
import java.math.BigDecimal;
import java.math.MathContext;
import java.util.*;
import ch.obermuhlner.math.big.internal.AsinCalculator;
import ch.obermuhlner.math.big.internal.CosCalculator;
import ch.obermuhlner.math.big.internal.CoshCalculator;
import ch.obermuhlner.math.big.internal.ExpCalculator;
import ch.obermuhlner.math.big.internal.SinCalculator;
import ch.obermuhlner.math.big.internal.SinhCalculator;
/**
* Provides advanced functions operating on {@link BigDecimal}s.
*/
public class BigDecimalMath {
private static final BigDecimal TWO = valueOf(2);
private static final BigDecimal THREE = valueOf(3);
private static final BigDecimal MINUS_ONE = valueOf(-1);
private static final BigDecimal ONE_HALF = valueOf(0.5);
private static final BigDecimal DOUBLE_MAX_VALUE = BigDecimal.valueOf(Double.MAX_VALUE);
private static volatile BigDecimal log2Cache;
private static final Object log2CacheLock = new Object();
private static volatile BigDecimal log3Cache;
private static final Object log3CacheLock = new Object();
private static volatile BigDecimal log10Cache;
private static final Object log10CacheLock = new Object();
private static volatile BigDecimal piCache;
private static final Object piCacheLock = new Object();
private static volatile BigDecimal eCache;
private static final Object eCacheLock = new Object();
private static final BigDecimal ROUGHLY_TWO_PI = new BigDecimal("3.141592653589793").multiply(TWO);
private static final int EXPECTED_INITIAL_PRECISION = 15;
private static BigDecimal[] factorialCache = new BigDecimal[100];
static {
BigDecimal result = ONE;
factorialCache[0] = result;
for (int i = 1; i < factorialCache.length; i++) {
result = result.multiply(valueOf(i));
factorialCache[i] = result;
}
}
private static final Map> spougeFactorialConstantsCache = new HashMap<>();
private static final Object spougeFactorialConstantsCacheLock = new Object();
private BigDecimalMath() {
// prevent instances
}
/**
* Creates a {@link BigDecimal} from the specified String
representation.
*
* This method is equivalent to the String constructor {@link BigDecimal#BigDecimal(String)}
* but has been optimized for large strings (several thousand digits).
*
* @param string the String representation
* @return the created {@link BigDecimal}
* @throws NumberFormatException if string
is not a valid representation of a {@link BigDecimal}
* @see BigDecimal#BigDecimal(String)
* @see #toBigDecimal(String, MathContext)
*/
public static BigDecimal toBigDecimal(String string) {
return toBigDecimal(string, MathContext.UNLIMITED);
}
/**
* Creates a {@link BigDecimal} from the specified String
representation.
*
* This method is equivalent to the String constructor {@link BigDecimal#BigDecimal(String, MathContext)}
* but has been optimized for large strings (several thousand digits).
*
* @param string the string representation
* @param mathContext the {@link MathContext} used for the result
* @return the created {@link BigDecimal}
* @throws NumberFormatException if string
is not a valid representation of a {@link BigDecimal}
* @throws ArithmeticException if the result is inexact but the rounding mode is {@code UNNECESSARY}
* @see BigDecimal#BigDecimal(String, MathContext)
* @see #toBigDecimal(String)
*/
public static BigDecimal toBigDecimal(String string, MathContext mathContext) {
int len = string.length();
if (len < 600) {
return new BigDecimal(string, mathContext);
}
int splitLength = len / (len >= 10000 ? 8 : 5);
return toBigDecimal(string, mathContext, splitLength);
}
static BigDecimal toBigDecimal(String string, MathContext mathContext, int splitLength) {
int len = string.length();
if (len < splitLength) {
return new BigDecimal(string, mathContext);
}
char[] chars = string.toCharArray();
boolean numberHasSign = false;
boolean negative = false;
int numberIndex = 0;
int dotIndex = -1;
int expIndex = -1;
boolean expHasSign = false;
int scale = 0;
for (int i = 0; i < len; i++) {
char c = chars[i];
switch (c) {
case '+':
if (expIndex >= 0) {
if (expHasSign) {
throw new NumberFormatException("Multiple signs in exponent");
}
expHasSign = true;
} else {
if (numberHasSign) {
throw new NumberFormatException("Multiple signs in number");
}
numberHasSign = true;
numberIndex = i + 1;
}
break;
case '-':
if (expIndex >= 0) {
if (expHasSign) {
throw new NumberFormatException("Multiple signs in exponent");
}
expHasSign = true;
} else {
if (numberHasSign) {
throw new NumberFormatException("Multiple signs in number");
}
numberHasSign = true;
negative = true;
numberIndex = i + 1;
}
break;
case 'e':
case 'E':
if (expIndex >= 0) {
throw new NumberFormatException("Multiple exponent markers");
}
expIndex = i;
break;
case '.':
if (dotIndex >= 0) {
throw new NumberFormatException("Multiple decimal points");
}
dotIndex = i;
break;
default:
if (dotIndex >= 0 && expIndex == -1) {
scale++;
}
}
}
int numberEndIndex;
int exp = 0;
if (expIndex >= 0) {
numberEndIndex = expIndex;
String expString = new String(chars, expIndex + 1, len - expIndex - 1);
exp = Integer.parseInt(expString);
scale = adjustScale(scale, exp);
} else {
numberEndIndex = len;
}
BigDecimal result;
if (dotIndex >= 0) {
int leftLength = dotIndex - numberIndex;
BigDecimal bigDecimalLeft = toBigDecimalRecursive(chars, numberIndex, leftLength, exp, splitLength);
int rightLength = numberEndIndex - dotIndex - 1;
BigDecimal bigDecimalRight = toBigDecimalRecursive(chars, dotIndex + 1, rightLength, exp-rightLength, splitLength);
result = bigDecimalLeft.add(bigDecimalRight);
} else {
result = toBigDecimalRecursive(chars, numberIndex, numberEndIndex - numberIndex, exp, splitLength);
}
if (scale != 0) {
result = result.setScale(scale);
}
if (negative) {
result = result.negate();
}
if (mathContext.getPrecision() != 0) {
result = result.round(mathContext);
}
return result;
}
private static int adjustScale(int scale, long exp) {
long adjustedScale = scale - exp;
if (adjustedScale > Integer.MAX_VALUE || adjustedScale < Integer.MIN_VALUE)
throw new NumberFormatException("Scale out of range: " + adjustedScale + " while adjusting scale " + scale + " to exponent " + exp);
return (int) adjustedScale;
}
private static BigDecimal toBigDecimalRecursive(char[] chars, int offset, int length, int scale, int splitLength) {
if (length > splitLength) {
int mid = length / 2;
BigDecimal bigDecimalLeft = toBigDecimalRecursive(chars, offset, mid, scale + length - mid, splitLength);
BigDecimal bigDecimalRight = toBigDecimalRecursive(chars, offset + mid, length - mid, scale, splitLength);
return bigDecimalLeft.add(bigDecimalRight);
}
if (length == 0) {
return BigDecimal.ZERO;
}
return new BigDecimal(chars, offset, length).movePointRight(scale);
}
/**
* Returns whether the specified {@link BigDecimal} value can be represented as int
.
*
* If this returns true
you can call {@link BigDecimal#intValueExact()} without fear of an {@link ArithmeticException}.
*
* @param value the {@link BigDecimal} to check
* @return true
if the value can be represented as int
value
*/
public static boolean isIntValue(BigDecimal value) {
// TODO impl isIntValue() without exceptions
try {
value.intValueExact();
return true;
} catch (ArithmeticException ex) {
// ignored
}
return false;
}
/**
* Returns whether the specified {@link BigDecimal} value can be represented as long
.
*
* If this returns true
you can call {@link BigDecimal#longValueExact()} without fear of an {@link ArithmeticException}.
*
* @param value the {@link BigDecimal} to check
* @return true
if the value can be represented as long
value
*/
public static boolean isLongValue(BigDecimal value) {
// TODO impl isLongValue() without exceptions
try {
value.longValueExact();
return true;
} catch (ArithmeticException ex) {
// ignored
}
return false;
}
/**
* Returns whether the specified {@link BigDecimal} value can be represented as double
.
*
* If this returns true
you can call {@link BigDecimal#doubleValue()}
* without fear of getting {@link Double#POSITIVE_INFINITY} or {@link Double#NEGATIVE_INFINITY} as result.
*
* Example: BigDecimalMath.isDoubleValue(new BigDecimal("1E309"))
returns false
,
* because new BigDecimal("1E309").doubleValue()
returns Infinity
.
*
* Note: This method does not check for possible loss of precision.
*
* For example BigDecimalMath.isDoubleValue(new BigDecimal("1.23400000000000000000000000000000001"))
will return true
,
* because new BigDecimal("1.23400000000000000000000000000000001").doubleValue()
returns a valid double value,
* although it loses precision and returns 1.234
.
*
* BigDecimalMath.isDoubleValue(new BigDecimal("1E-325"))
will return true
* although this value is smaller than {@link Double#MIN_VALUE} (and therefore outside the range of values that can be represented as double
)
* because new BigDecimal("1E-325").doubleValue()
returns 0
which is a legal value with loss of precision.
*
* @param value the {@link BigDecimal} to check
* @return true
if the value can be represented as double
value
*/
public static boolean isDoubleValue(BigDecimal value) {
if (value.compareTo(DOUBLE_MAX_VALUE) > 0) {
return false;
}
if (value.compareTo(DOUBLE_MAX_VALUE.negate()) < 0) {
return false;
}
return true;
}
/**
* Returns the mantissa of the specified {@link BigDecimal} written as mantissa * 10exponent.
*
* The mantissa is defined as having exactly 1 digit before the decimal point.
*
* @param value the {@link BigDecimal}
* @return the mantissa
* @see #exponent(BigDecimal)
*/
public static BigDecimal mantissa(BigDecimal value) {
int exponent = exponent(value);
if (exponent == 0) {
return value;
}
return value.movePointLeft(exponent);
}
/**
* Returns the exponent of the specified {@link BigDecimal} written as mantissa * 10exponent.
*
* The mantissa is defined as having exactly 1 digit before the decimal point.
*
* @param value the {@link BigDecimal}
* @return the exponent
* @see #mantissa(BigDecimal)
*/
public static int exponent(BigDecimal value) {
return value.precision() - value.scale() - 1;
}
/**
* Returns the number of significant digits of the specified {@link BigDecimal}.
*
* The result contains the number of all digits before the decimal point and
* all digits after the decimal point excluding trailing zeroes.
*
* Examples:
*
* significantDigits(new BigDecimal("12300.00"))
returns 5
* significantDigits(new BigDecimal("1.23000"))
returns 3
* significantDigits(new BigDecimal("0.00012300"))
returns 3
* significantDigits(new BigDecimal("12300.4500"))
returns 7
*
*
* See: Wikipedia: Significant figures
*
* @param value the {@link BigDecimal}
* @return the number of significant digits
* @see BigDecimal#stripTrailingZeros()
* @see BigDecimal#precision()
*/
public static int significantDigits(BigDecimal value) {
BigDecimal stripped = value.stripTrailingZeros();
if (stripped.scale() >= 0) {
return stripped.precision();
} else {
return stripped.precision() - stripped.scale();
}
}
/**
* Returns the integral part of the specified {@link BigDecimal} (left of the decimal point).
*
* @param value the {@link BigDecimal}
* @return the integral part
* @see #fractionalPart(BigDecimal)
*/
public static BigDecimal integralPart(BigDecimal value) {
return value.setScale(0, BigDecimal.ROUND_DOWN);
}
/**
* Returns the fractional part of the specified {@link BigDecimal} (right of the decimal point).
*
* @param value the {@link BigDecimal}
* @return the fractional part
* @see #integralPart(BigDecimal)
*/
public static BigDecimal fractionalPart(BigDecimal value) {
return value.subtract(integralPart(value));
}
/**
* Rounds the specified {@link BigDecimal} to the precision of the specified {@link MathContext}.
*
* This method calls {@link BigDecimal#round(MathContext)}.
*
* @param value the {@link BigDecimal} to round
* @param mathContext the {@link MathContext} used for the result
* @return the rounded {@link BigDecimal} value
* @see BigDecimal#round(MathContext)
* @see BigDecimalMath#roundWithTrailingZeroes(BigDecimal, MathContext)
*/
public static BigDecimal round(BigDecimal value, MathContext mathContext) {
return value.round(mathContext);
}
/**
* Rounds the specified {@link BigDecimal} to the precision of the specified {@link MathContext} including trailing zeroes.
*
* This method is similar to {@link BigDecimal#round(MathContext)} but does not remove the trailing zeroes.
*
* Example:
MathContext mc = new MathContext(5);
System.out.println(BigDecimalMath.roundWithTrailingZeroes(new BigDecimal("1.234567"), mc)); // 1.2346
System.out.println(BigDecimalMath.roundWithTrailingZeroes(new BigDecimal("123.4567"), mc)); // 123.46
System.out.println(BigDecimalMath.roundWithTrailingZeroes(new BigDecimal("0.001234567"), mc)); // 0.0012346
System.out.println(BigDecimalMath.roundWithTrailingZeroes(new BigDecimal("1.23"), mc)); // 1.2300
System.out.println(BigDecimalMath.roundWithTrailingZeroes(new BigDecimal("1.230000"), mc)); // 1.2300
System.out.println(BigDecimalMath.roundWithTrailingZeroes(new BigDecimal("0.00123"), mc)); // 0.0012300
System.out.println(BigDecimalMath.roundWithTrailingZeroes(new BigDecimal("0"), mc)); // 0.0000
System.out.println(BigDecimalMath.roundWithTrailingZeroes(new BigDecimal("0.00000000"), mc)); // 0.0000
*
* @param value the {@link BigDecimal} to round
* @param mathContext the {@link MathContext} used for the result
* @return the rounded {@link BigDecimal} value including trailing zeroes
* @see BigDecimal#round(MathContext)
* @see BigDecimalMath#round(BigDecimal, MathContext)
*/
public static BigDecimal roundWithTrailingZeroes(BigDecimal value, MathContext mathContext) {
if (value.precision() == mathContext.getPrecision()) {
return value;
}
if (value.signum() == 0) {
return BigDecimal.ZERO.setScale(mathContext.getPrecision() - 1);
}
try {
BigDecimal stripped = value.stripTrailingZeros();
int exponentStripped = exponent(stripped); // value.precision() - value.scale() - 1;
BigDecimal zero;
if (exponentStripped < -1) {
zero = BigDecimal.ZERO.setScale(mathContext.getPrecision() - exponentStripped);
} else {
zero = BigDecimal.ZERO.setScale(mathContext.getPrecision() + exponentStripped + 1);
}
return stripped.add(zero, mathContext);
} catch (ArithmeticException ex) {
return value.round(mathContext);
}
}
/**
* Calculates the reciprocal of the specified {@link BigDecimal}.
*
* @param x the {@link BigDecimal}
* @param mathContext the {@link MathContext} used for the result
* @return the reciprocal {@link BigDecimal}
* @throws ArithmeticException if x = 0
* @throws ArithmeticException if the result is inexact but the
* rounding mode is {@code UNNECESSARY} or
* {@code mc.precision == 0} and the quotient has a
* non-terminating decimal expansion.
*/
public static BigDecimal reciprocal(BigDecimal x, MathContext mathContext) {
return BigDecimal.ONE.divide(x, mathContext);
}
/**
* Calculates the factorial of the specified integer argument.
*
* factorial = 1 * 2 * 3 * ... n
*
* @param n the {@link BigDecimal}
* @return the factorial {@link BigDecimal}
* @throws ArithmeticException if x < 0
*/
public static BigDecimal factorial(int n) {
if (n < 0) {
throw new ArithmeticException("Illegal factorial(n) for n < 0: n = " + n);
}
if (n < factorialCache.length) {
return factorialCache[n];
}
BigDecimal result = factorialCache[factorialCache.length - 1];
return result.multiply(factorialRecursion(factorialCache.length, n));
}
private static BigDecimal factorialLoop(int n1, final int n2) {
final long limit = Long.MAX_VALUE / n2;
long accu = 1;
BigDecimal result = BigDecimal.ONE;
while (n1 <= n2) {
if (accu <= limit) {
accu *= n1;
} else {
result = result.multiply(BigDecimal.valueOf(accu));
accu = n1;
}
n1++;
}
return result.multiply(BigDecimal.valueOf(accu));
}
private static BigDecimal factorialRecursion(final int n1, final int n2) {
int threshold = n1 > 200 ? 80 : 150;
if (n2 - n1 < threshold) {
return factorialLoop(n1, n2);
}
final int mid = (n1 + n2) >> 1;
return factorialRecursion(mid + 1, n2).multiply(factorialRecursion(n1, mid));
}
/**
* Calculates the factorial of the specified {@link BigDecimal}.
*
* This implementation uses
* Spouge's approximation
* to calculate the factorial for non-integer values.
*
* This involves calculating a series of constants that depend on the desired precision.
* Since this constant calculation is quite expensive (especially for higher precisions),
* the constants for a specific precision will be cached
* and subsequent calls to this method with the same precision will be much faster.
*
* It is therefore recommended to do one call to this method with the standard precision of your application during the startup phase
* and to avoid calling it with many different precisions.
*
* See: Wikipedia: Factorial - Extension of factorial to non-integer values of argument
*
* @param x the {@link BigDecimal}
* @param mathContext the {@link MathContext} used for the result
* @return the factorial {@link BigDecimal}
* @throws ArithmeticException if x is a negative integer value (-1, -2, -3, ...)
* @throws UnsupportedOperationException if x is a non-integer value and the {@link MathContext} has unlimited precision
* @see #factorial(int)
* @see #gamma(BigDecimal, MathContext)
*/
public static BigDecimal factorial(BigDecimal x, MathContext mathContext) {
if (isIntValue(x)) {
return round(factorial(x.intValueExact()), mathContext);
}
// https://en.wikipedia.org/wiki/Spouge%27s_approximation
checkMathContext(mathContext);
MathContext mc = new MathContext(mathContext.getPrecision() << 1, mathContext.getRoundingMode());
int a = mathContext.getPrecision() * 13 / 10;
List constants = getSpougeFactorialConstants(a);
BigDecimal bigA = BigDecimal.valueOf(a);
boolean negative = false;
BigDecimal factor = constants.get(0);
for (int k = 1; k < a; k++) {
BigDecimal bigK = BigDecimal.valueOf(k);
factor = factor.add(constants.get(k).divide(x.add(bigK), mc));
negative = !negative;
}
BigDecimal result = pow(x.add(bigA), x.add(BigDecimal.valueOf(0.5)), mc);
result = result.multiply(exp(x.negate().subtract(bigA), mc));
result = result.multiply(factor);
return round(result, mathContext);
}
static List getSpougeFactorialConstants(int a) {
synchronized (spougeFactorialConstantsCacheLock) {
return spougeFactorialConstantsCache.computeIfAbsent(a, key -> {
List constants = new ArrayList<>(a);
MathContext mc = new MathContext(a * 15 / 10);
BigDecimal c0 = sqrt(pi(mc).multiply(TWO, mc), mc);
constants.add(c0);
boolean negative = false;
for (int k = 1; k < a; k++) {
BigDecimal bigK = BigDecimal.valueOf(k);
long deltaAK = (long)a - k;
BigDecimal ck = pow(BigDecimal.valueOf(deltaAK), bigK.subtract(ONE_HALF), mc);
ck = ck.multiply(exp(BigDecimal.valueOf(deltaAK), mc), mc);
ck = ck.divide(factorial(k - 1), mc);
if (negative) {
ck = ck.negate();
}
constants.add(ck);
negative = !negative;
}
return Collections.unmodifiableList(constants);
});
}
}
/**
* Calculates the gamma function of the specified {@link BigDecimal}.
*
* This implementation uses {@link #factorial(BigDecimal, MathContext)} internally,
* therefore the performance implications described there apply also for this method.
*
*
See: Wikipedia: Gamma function
*
* @param x the {@link BigDecimal}
* @param mathContext the {@link MathContext} used for the result
* @return the gamma {@link BigDecimal}
* @throws ArithmeticException if x-1 is a negative integer value (-1, -2, -3, ...)
* @throws UnsupportedOperationException if x is a non-integer value and the {@link MathContext} has unlimited precision
* @see #factorial(BigDecimal, MathContext)
*/
public static BigDecimal gamma(BigDecimal x, MathContext mathContext) {
return factorial(x.subtract(ONE), mathContext);
}
/**
* Calculates the Bernoulli number for the specified index.
*
* This function calculates the first Bernoulli numbers and therefore bernoulli(1)
returns -0.5
* Note that bernoulli(x)
for all odd x > 1 returns 0
* See: Wikipedia: Bernoulli number
*
* @param n the index of the Bernoulli number to be calculated (starting at 0)
* @param mathContext the {@link MathContext} used for the result
* @return the Bernoulli number for the specified index
* @throws ArithmeticException if x < 0
* @throws ArithmeticException if the result is inexact but the
* rounding mode is {@code UNNECESSARY} or
* {@code mc.precision == 0} and the quotient has a
* non-terminating decimal expansion.
*/
public static BigDecimal bernoulli(int n, MathContext mathContext) {
if (n < 0) {
throw new ArithmeticException("Illegal bernoulli(n) for n < 0: n = " + n);
}
BigRational b = BigRational.bernoulli(n);
return b.toBigDecimal(mathContext);
}
/**
* Calculates {@link BigDecimal} x to the power of {@link BigDecimal} y (xy).
*
* @param x the {@link BigDecimal} value to take to the power
* @param y the {@link BigDecimal} value to serve as exponent
* @param mathContext the {@link MathContext} used for the result
* @return the calculated x to the power of y with the precision specified in the mathContext
* @throws UnsupportedOperationException if the {@link MathContext} has unlimited precision
* @see #pow(BigDecimal, long, MathContext)
*/
public static BigDecimal pow(BigDecimal x, BigDecimal y, MathContext mathContext) {
checkMathContext(mathContext);
if (x.signum() == 0) {
switch (y.signum()) {
case 0 : return round(ONE, mathContext);
case 1 : return round(ZERO, mathContext);
}
}
// TODO optimize y=0, y=1, y=10^k, y=-1, y=-10^k
try {
long longValue = y.longValueExact();
return pow(x, longValue, mathContext);
} catch (ArithmeticException ex) {
// ignored
}
if (fractionalPart(y).signum() == 0) {
return powInteger(x, y, mathContext);
}
// x^y = exp(y*log(x))
MathContext mc = new MathContext(mathContext.getPrecision() + 6, mathContext.getRoundingMode());
BigDecimal result = exp(y.multiply(log(x, mc), mc), mc);
return round(result, mathContext);
}
/**
* Calculates {@link BigDecimal} x to the power of long
y (xy).
*
* The implementation tries to minimize the number of multiplications of {@link BigDecimal x} (using squares whenever possible).
*
* See: Wikipedia: Exponentiation - efficient computation
*
* @param x the {@link BigDecimal} value to take to the power
* @param y the long
value to serve as exponent
* @param mathContext the {@link MathContext} used for the result
* @return the calculated x to the power of y with the precision specified in the mathContext
* @throws ArithmeticException if y is negative and the result is inexact but the
* rounding mode is {@code UNNECESSARY} or
* {@code mc.precision == 0} and the quotient has a
* non-terminating decimal expansion.
* @throws ArithmeticException if the rounding mode is
* {@code UNNECESSARY} and the
* {@code BigDecimal} operation would require rounding.
*/
public static BigDecimal pow(BigDecimal x, long y, MathContext mathContext) {
MathContext mc = mathContext.getPrecision() == 0 ? mathContext : new MathContext(mathContext.getPrecision() + 10, mathContext.getRoundingMode());
// TODO optimize y=0, y=1, y=10^k, y=-1, y=-10^k
if (y < 0) {
BigDecimal value = reciprocal(pow(x, -y, mc), mc);
return round(value, mathContext);
}
BigDecimal result = ONE;
while (y > 0) {
if ((y & 1) == 1) {
// odd exponent -> multiply result with x
result = result.multiply(x, mc);
y -= 1;
}
if (y > 0) {
// even exponent -> square x
x = x.multiply(x, mc);
}
y >>= 1;
}
return round(result, mathContext);
}
/**
* Calculates {@link BigDecimal} x to the power of the integer value y (xy).
*
* The value y MUST be an integer value.
*
* @param x the {@link BigDecimal} value to take to the power
* @param integerY the {@link BigDecimal} integer value to serve as exponent
* @param mathContext the {@link MathContext} used for the result
* @return the calculated x to the power of y with the precision specified in the mathContext
* @see #pow(BigDecimal, long, MathContext)
*/
private static BigDecimal powInteger(BigDecimal x, BigDecimal integerY, MathContext mathContext) {
if (fractionalPart(integerY).signum() != 0) {
throw new IllegalArgumentException("Not integer value: " + integerY);
}
if (integerY.signum() < 0) {
return ONE.divide(powInteger(x, integerY.negate(), mathContext), mathContext);
}
MathContext mc = new MathContext(Math.max(mathContext.getPrecision(), -integerY.scale()) + 30, mathContext.getRoundingMode());
BigDecimal result = ONE;
while (integerY.signum() > 0) {
BigDecimal halfY = integerY.divide(TWO, mc);
if (fractionalPart(halfY).signum() != 0) {
// odd exponent -> multiply result with x
result = result.multiply(x, mc);
integerY = integerY.subtract(ONE);
halfY = integerY.divide(TWO, mc);
}
if (halfY.signum() > 0) {
// even exponent -> square x
x = x.multiply(x, mc);
}
integerY = halfY;
}
return round(result, mathContext);
}
/**
* Calculates the square root of {@link BigDecimal} x.
*
*
*
* @param x the {@link BigDecimal} value to calculate the square root
* @param mathContext the {@link MathContext} used for the result
* @return the calculated square root of x with the precision specified in the mathContext
* @throws ArithmeticException if x < 0
* @throws UnsupportedOperationException if the {@link MathContext} has unlimited precision
*/
public static BigDecimal sqrt(BigDecimal x, MathContext mathContext) {
checkMathContext(mathContext);
switch (x.signum()) {
case 0:
return ZERO;
case -1:
throw new ArithmeticException("Illegal sqrt(x) for x < 0: x = " + x);
}
int maxPrecision = mathContext.getPrecision() + 6;
BigDecimal acceptableError = ONE.movePointLeft(mathContext.getPrecision() + 1);
BigDecimal result;
int adaptivePrecision;
if (isDoubleValue(x)) {
result = BigDecimal.valueOf(Math.sqrt(x.doubleValue()));
adaptivePrecision = EXPECTED_INITIAL_PRECISION;
} else {
result = x.multiply(ONE_HALF, mathContext);
adaptivePrecision = 1;
}
BigDecimal last;
if (adaptivePrecision < maxPrecision) {
if (result.multiply(result).compareTo(x) == 0) {
return round(result, mathContext); // early exit if x is a square number
}
do {
last = result;
adaptivePrecision <<= 1;
if (adaptivePrecision > maxPrecision) {
adaptivePrecision = maxPrecision;
}
MathContext mc = new MathContext(adaptivePrecision, mathContext.getRoundingMode());
result = x.divide(result, mc).add(last).multiply(ONE_HALF, mc);
}
while (adaptivePrecision < maxPrecision || result.subtract(last).abs().compareTo(acceptableError) > 0);
}
return round(result, mathContext);
}
/**
* Calculates the n'th root of {@link BigDecimal} x.
*
*
* @param x the {@link BigDecimal} value to calculate the n'th root
* @param n the {@link BigDecimal} defining the root
* @param mathContext the {@link MathContext} used for the result
*
* @return the calculated n'th root of x with the precision specified in the mathContext
* @throws ArithmeticException if x < 0
* @throws UnsupportedOperationException if the {@link MathContext} has unlimited precision
*/
public static BigDecimal root(BigDecimal x, BigDecimal n, MathContext mathContext) {
checkMathContext(mathContext);
switch (x.signum()) {
case 0:
return ZERO;
case -1:
throw new ArithmeticException("Illegal root(x) for x < 0: x = " + x);
}
if (n.compareTo(BigDecimal.ONE) <= 0) {
MathContext mc = new MathContext(mathContext.getPrecision() + 6, mathContext.getRoundingMode());
return pow(x, BigDecimal.ONE.divide(n, mc), mathContext);
}
int maxPrecision = mathContext.getPrecision() + 4;
BigDecimal acceptableError = ONE.movePointLeft(mathContext.getPrecision() + 1);
BigDecimal nMinus1 = n.subtract(ONE);
BigDecimal result = x.divide(TWO, MathContext.DECIMAL32);
int adaptivePrecision = 2; // first approximation has really bad precision
BigDecimal step;
do {
adaptivePrecision *= 3;
if (adaptivePrecision > maxPrecision) {
adaptivePrecision = maxPrecision;
}
MathContext mc = new MathContext(adaptivePrecision, mathContext.getRoundingMode());
step = x.divide(pow(result, nMinus1, mc), mc).subtract(result).divide(n, mc);
result = result.add(step);
} while (adaptivePrecision < maxPrecision || step.abs().compareTo(acceptableError) > 0);
return round(result, mathContext);
}
/**
* Calculates the natural logarithm of {@link BigDecimal} x.
*
* See: Wikipedia: Natural logarithm
*
* @param x the {@link BigDecimal} to calculate the natural logarithm for
* @param mathContext the {@link MathContext} used for the result
* @return the calculated natural logarithm {@link BigDecimal} with the precision specified in the mathContext
* @throws ArithmeticException if x <= 0
* @throws UnsupportedOperationException if the {@link MathContext} has unlimited precision
*/
public static BigDecimal log(BigDecimal x, MathContext mathContext) {
checkMathContext(mathContext);
if (x.signum() <= 0) {
throw new ArithmeticException("Illegal log(x) for x <= 0: x = " + x);
}
if (x.compareTo(ONE) == 0) {
return ZERO;
}
BigDecimal result;
switch (x.compareTo(TEN)) {
case 0:
result = logTen(mathContext);
break;
case 1:
result = logUsingExponent(x, mathContext);
break;
default :
result = logUsingTwoThree(x, mathContext);
}
return round(result, mathContext);
}
/**
* Calculates the logarithm of {@link BigDecimal} x to the base 2.
*
* @param x the {@link BigDecimal} to calculate the logarithm base 2 for
* @param mathContext the {@link MathContext} used for the result
* @return the calculated natural logarithm {@link BigDecimal} to the base 2 with the precision specified in the mathContext
* @throws ArithmeticException if x <= 0
* @throws UnsupportedOperationException if the {@link MathContext} has unlimited precision
*/
public static BigDecimal log2(BigDecimal x, MathContext mathContext) {
checkMathContext(mathContext);
MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode());
BigDecimal result = log(x, mc).divide(logTwo(mc), mc);
return round(result, mathContext);
}
/**
* Calculates the logarithm of {@link BigDecimal} x to the base 10.
*
* @param x the {@link BigDecimal} to calculate the logarithm base 10 for
* @param mathContext the {@link MathContext} used for the result
* @return the calculated natural logarithm {@link BigDecimal} to the base 10 with the precision specified in the mathContext
* @throws ArithmeticException if x <= 0
* @throws UnsupportedOperationException if the {@link MathContext} has unlimited precision
*/
public static BigDecimal log10(BigDecimal x, MathContext mathContext) {
checkMathContext(mathContext);
MathContext mc = new MathContext(mathContext.getPrecision() + 2, mathContext.getRoundingMode());
BigDecimal result = log(x, mc).divide(logTen(mc), mc);
return round(result, mathContext);
}
private static BigDecimal logUsingNewton(BigDecimal x, MathContext mathContext) {
// https://en.wikipedia.org/wiki/Natural_logarithm in chapter 'High Precision'
// y = y + 2 * (x-exp(y)) / (x+exp(y))
int maxPrecision = mathContext.getPrecision() + 20;
BigDecimal acceptableError = ONE.movePointLeft(mathContext.getPrecision() + 1);
//System.out.println("logUsingNewton(" + x + " " + mathContext + ") precision " + maxPrecision);
BigDecimal result;
int adaptivePrecision;
double doubleX = x.doubleValue();
if (doubleX > 0.0 && isDoubleValue(x)) {
result = BigDecimal.valueOf(Math.log(doubleX));
adaptivePrecision = EXPECTED_INITIAL_PRECISION;
} else {
result = x.divide(TWO, mathContext);
adaptivePrecision = 1;
}
BigDecimal step;
do {
adaptivePrecision *= 3;
if (adaptivePrecision > maxPrecision) {
adaptivePrecision = maxPrecision;
}
MathContext mc = new MathContext(adaptivePrecision, mathContext.getRoundingMode());
BigDecimal expY = BigDecimalMath.exp(result, mc);
step = TWO.multiply(x.subtract(expY)).divide(x.add(expY), mc);
//System.out.println(" step " + step + " adaptivePrecision=" + adaptivePrecision);
result = result.add(step);
} while (adaptivePrecision < maxPrecision || step.abs().compareTo(acceptableError) > 0);
return result;
}
private static BigDecimal logUsingExponent(BigDecimal x, MathContext mathContext) {
MathContext mcDouble = new MathContext(mathContext.getPrecision() << 1, mathContext.getRoundingMode());
MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode());
//System.out.println("logUsingExponent(" + x + " " + mathContext + ") precision " + mc);
int exponent = exponent(x);
BigDecimal mantissa = mantissa(x);
BigDecimal result = logUsingTwoThree(mantissa, mc);
if (exponent != 0) {
result = result.add(valueOf(exponent).multiply(logTen(mcDouble), mc));
}
return result;
}
private static BigDecimal logUsingTwoThree(BigDecimal x, MathContext mathContext) {
MathContext mcDouble = new MathContext(mathContext.getPrecision() << 1, mathContext.getRoundingMode());
MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode());
//System.out.println("logUsingTwoThree(" + x + " " + mathContext + ") precision " + mc);
int factorOfTwo = 0;
int powerOfTwo = 1;
int factorOfThree = 0;
int powerOfThree = 1;
double value = x.doubleValue();
if (value < 0.01) {
// do nothing
} else if (value < 0.1) { // never happens when called by logUsingExponent()
while (value < 0.6) {
value *= 2;
factorOfTwo--;
powerOfTwo <<= 1;
}
}
else if (value < 0.115) { // (0.1 - 0.11111 - 0.115) -> (0.9 - 1.0 - 1.035)
factorOfThree = -2;
powerOfThree = 9;
}
else if (value < 0.14) { // (0.115 - 0.125 - 0.14) -> (0.92 - 1.0 - 1.12)
factorOfTwo = -3;
powerOfTwo = 8;
}
else if (value < 0.2) { // (0.14 - 0.16667 - 0.2) - (0.84 - 1.0 - 1.2)
factorOfTwo = -1;
powerOfTwo = 2;
factorOfThree = -1;
powerOfThree = 3;
}
else if (value < 0.3) { // (0.2 - 0.25 - 0.3) -> (0.8 - 1.0 - 1.2)
factorOfTwo = -2;
powerOfTwo = 4;
}
else if (value < 0.42) { // (0.3 - 0.33333 - 0.42) -> (0.9 - 1.0 - 1.26)
factorOfThree = -1;
powerOfThree = 3;
}
else if (value < 0.7) { // (0.42 - 0.5 - 0.7) -> (0.84 - 1.0 - 1.4)
factorOfTwo = -1;
powerOfTwo = 2;
}
else if (value < 1.4) { // (0.7 - 1.0 - 1.4) -> (0.7 - 1.0 - 1.4)
// do nothing
}
else if (value < 2.5) { // (1.4 - 2.0 - 2.5) -> (0.7 - 1.0 - 1.25)
factorOfTwo = 1;
powerOfTwo = 2;
}
else if (value < 3.5) { // (2.5 - 3.0 - 3.5) -> (0.833333 - 1.0 - 1.166667)
factorOfThree = 1;
powerOfThree = 3;
}
else if (value < 5.0) { // (3.5 - 4.0 - 5.0) -> (0.875 - 1.0 - 1.25)
factorOfTwo = 2;
powerOfTwo = 4;
}
else if (value < 7.0) { // (5.0 - 6.0 - 7.0) -> (0.833333 - 1.0 - 1.166667)
factorOfThree = 1;
powerOfThree = 3;
factorOfTwo = 1;
powerOfTwo = 2;
}
else if (value < 8.5) { // (7.0 - 8.0 - 8.5) -> (0.875 - 1.0 - 1.0625)
factorOfTwo = 3;
powerOfTwo = 8;
}
else if (value < 10.0) { // (8.5 - 9.0 - 10.0) -> (0.94444 - 1.0 - 1.11111)
factorOfThree = 2;
powerOfThree = 9;
}
else {
while (value > 1.4) { // never happens when called by logUsingExponent()
value /= 2;
factorOfTwo++;
powerOfTwo <<= 1;
}
}
BigDecimal correctedX = x;
BigDecimal result = ZERO;
if (factorOfTwo > 0) {
correctedX = correctedX.divide(valueOf(powerOfTwo), mc);
result = result.add(logTwo(mcDouble).multiply(valueOf(factorOfTwo), mc));
}
else if (factorOfTwo < 0) {
correctedX = correctedX.multiply(valueOf(powerOfTwo), mc);
result = result.subtract(logTwo(mcDouble).multiply(valueOf(-factorOfTwo), mc));
}
if (factorOfThree > 0) {
correctedX = correctedX.divide(valueOf(powerOfThree), mc);
result = result.add(logThree(mcDouble).multiply(valueOf(factorOfThree), mc));
}
else if (factorOfThree < 0) {
correctedX = correctedX.multiply(valueOf(powerOfThree), mc);
result = result.subtract(logThree(mcDouble).multiply(valueOf(-factorOfThree), mc));
}
if (x == correctedX && result == ZERO) {
return logUsingNewton(x, mathContext);
}
result = result.add(logUsingNewton(correctedX, mc), mc);
return result;
}
/**
* Returns the number pi.
*
* See Wikipedia: Pi
*
* @param mathContext the {@link MathContext} used for the result
* @return the number pi with the precision specified in the mathContext
* @throws UnsupportedOperationException if the {@link MathContext} has unlimited precision
*/
public static BigDecimal pi(MathContext mathContext) {
checkMathContext(mathContext);
BigDecimal result = null;
synchronized (piCacheLock) {
if (piCache != null && mathContext.getPrecision() <= piCache.precision()) {
result = piCache;
} else {
piCache = piChudnovski(mathContext);
return piCache;
}
}
return round(result, mathContext);
}
private static BigDecimal piChudnovski(MathContext mathContext) {
MathContext mc = new MathContext(mathContext.getPrecision() + 10, mathContext.getRoundingMode());
final BigDecimal value24 = BigDecimal.valueOf(24);
final BigDecimal value640320 = BigDecimal.valueOf(640320);
final BigDecimal value13591409 = BigDecimal.valueOf(13591409);
final BigDecimal value545140134 = BigDecimal.valueOf(545140134);
final BigDecimal valueDivisor = value640320.pow(3).divide(value24, mc);
BigDecimal sumA = BigDecimal.ONE;
BigDecimal sumB = BigDecimal.ZERO;
BigDecimal a = BigDecimal.ONE;
long dividendTerm1 = 5; // -(6*k - 5)
long dividendTerm2 = -1; // 2*k - 1
long dividendTerm3 = -1; // 6*k - 1
BigDecimal kPower3 = BigDecimal.ZERO;
long iterationCount = (mc.getPrecision()+13) / 14;
for (long k = 1; k <= iterationCount; k++) {
BigDecimal valueK = BigDecimal.valueOf(k);
dividendTerm1 += -6;
dividendTerm2 += 2;
dividendTerm3 += 6;
BigDecimal dividend = BigDecimal.valueOf(dividendTerm1).multiply(BigDecimal.valueOf(dividendTerm2)).multiply(BigDecimal.valueOf(dividendTerm3));
kPower3 = valueK.pow(3);
BigDecimal divisor = kPower3.multiply(valueDivisor, mc);
a = a.multiply(dividend).divide(divisor, mc);
BigDecimal b = valueK.multiply(a, mc);
sumA = sumA.add(a);
sumB = sumB.add(b);
}
final BigDecimal value426880 = BigDecimal.valueOf(426880);
final BigDecimal value10005 = BigDecimal.valueOf(10005);
final BigDecimal factor = value426880.multiply(sqrt(value10005, mc));
BigDecimal pi = factor.divide(value13591409.multiply(sumA, mc).add(value545140134.multiply(sumB, mc)), mc);
return round(pi, mathContext);
}
/**
* Returns the number e.
*
* See Wikipedia: E (mathematical_constant)
*
* @param mathContext the {@link MathContext} used for the result
* @return the number e with the precision specified in the mathContext
* @throws UnsupportedOperationException if the {@link MathContext} has unlimited precision
*/
public static BigDecimal e(MathContext mathContext) {
checkMathContext(mathContext);
BigDecimal result = null;
synchronized (eCacheLock) {
if (eCache != null && mathContext.getPrecision() <= eCache.precision()) {
result = eCache;
} else {
eCache = exp(ONE, mathContext);
return eCache;
}
}
return round(result, mathContext);
}
private static BigDecimal logTen(MathContext mathContext) {
BigDecimal result = null;
synchronized (log10CacheLock) {
if (log10Cache != null && mathContext.getPrecision() <= log10Cache.precision()) {
result = log10Cache;
} else {
log10Cache = logUsingNewton(BigDecimal.TEN, mathContext);
return log10Cache;
}
}
return round(result, mathContext);
}
private static BigDecimal logTwo(MathContext mathContext) {
BigDecimal result = null;
synchronized (log2CacheLock) {
if (log2Cache != null && mathContext.getPrecision() <= log2Cache.precision()) {
result = log2Cache;
} else {
log2Cache = logUsingNewton(TWO, mathContext);
return log2Cache;
}
}
return round(result, mathContext);
}
private static BigDecimal logThree(MathContext mathContext) {
BigDecimal result = null;
synchronized (log3CacheLock) {
if (log3Cache != null && mathContext.getPrecision() <= log3Cache.precision()) {
result = log3Cache;
} else {
log3Cache = logUsingNewton(THREE, mathContext);
return log3Cache;
}
}
return round(result, mathContext);
}
/**
* Calculates the natural exponent of {@link BigDecimal} x (ex).
*
* See: Wikipedia: Exponent
*
* @param x the {@link BigDecimal} to calculate the exponent for
* @param mathContext the {@link MathContext} used for the result
* @return the calculated exponent {@link BigDecimal} with the precision specified in the mathContext
* @throws UnsupportedOperationException if the {@link MathContext} has unlimited precision
*/
public static BigDecimal exp(BigDecimal x, MathContext mathContext) {
checkMathContext(mathContext);
if (x.signum() == 0) {
return ONE;
}
return expIntegralFractional(x, mathContext);
}
private static BigDecimal expIntegralFractional(BigDecimal x, MathContext mathContext) {
BigDecimal integralPart = integralPart(x);
if (integralPart.signum() == 0) {
return expTaylor(x, mathContext);
}
BigDecimal fractionalPart = x.subtract(integralPart);
MathContext mc = new MathContext(mathContext.getPrecision() + 10, mathContext.getRoundingMode());
BigDecimal z = ONE.add(fractionalPart.divide(integralPart, mc));
BigDecimal t = expTaylor(z, mc);
BigDecimal result = pow(t, integralPart.intValueExact(), mc);
return round(result, mathContext);
}
private static BigDecimal expTaylor(BigDecimal x, MathContext mathContext) {
MathContext mc = new MathContext(mathContext.getPrecision() + 6, mathContext.getRoundingMode());
x = x.divide(valueOf(256), mc);
BigDecimal result = ExpCalculator.INSTANCE.calculate(x, mc);
result = BigDecimalMath.pow(result, 256, mc);
return round(result, mathContext);
}
/**
* Calculates the sine (sinus) of {@link BigDecimal} x.
*
* See: Wikipedia: Sine
*
* @param x the {@link BigDecimal} to calculate the sine for
* @param mathContext the {@link MathContext} used for the result
* @return the calculated sine {@link BigDecimal} with the precision specified in the mathContext
* @throws UnsupportedOperationException if the {@link MathContext} has unlimited precision
*/
public static BigDecimal sin(BigDecimal x, MathContext mathContext) {
checkMathContext(mathContext);
MathContext mc = new MathContext(mathContext.getPrecision() + 6, mathContext.getRoundingMode());
if (x.abs().compareTo(ROUGHLY_TWO_PI) > 0) {
MathContext mc2 = new MathContext(mc.getPrecision() + 4, mathContext.getRoundingMode());
BigDecimal twoPi = TWO.multiply(pi(mc2));
x = x.remainder(twoPi, mc2);
}
BigDecimal result = SinCalculator.INSTANCE.calculate(x, mc);
return round(result, mathContext);
}
/**
* Calculates the arc sine (inverted sine) of {@link BigDecimal} x.
*
* See: Wikipedia: Arcsine
*
* @param x the {@link BigDecimal} to calculate the arc sine for
* @param mathContext the {@link MathContext} used for the result
* @return the calculated arc sine {@link BigDecimal} with the precision specified in the mathContext
* @throws ArithmeticException if x > 1 or x < -1
* @throws UnsupportedOperationException if the {@link MathContext} has unlimited precision
*/
public static BigDecimal asin(BigDecimal x, MathContext mathContext) {
checkMathContext(mathContext);
if (x.compareTo(ONE) > 0) {
throw new ArithmeticException("Illegal asin(x) for x > 1: x = " + x);
}
if (x.compareTo(MINUS_ONE) < 0) {
throw new ArithmeticException("Illegal asin(x) for x < -1: x = " + x);
}
if (x.signum() == -1) {
return asin(x.negate(), mathContext).negate();
}
MathContext mc = new MathContext(mathContext.getPrecision() + 6, mathContext.getRoundingMode());
if (x.compareTo(BigDecimal.valueOf(0.707107)) >= 0) {
BigDecimal xTransformed = sqrt(ONE.subtract(x.multiply(x)), mc);
return acos(xTransformed, mathContext);
}
BigDecimal result = AsinCalculator.INSTANCE.calculate(x, mc);
return round(result, mathContext);
}
/**
* Calculates the cosine (cosinus) of {@link BigDecimal} x.
*
* See: Wikipedia: Cosine
*
* @param x the {@link BigDecimal} to calculate the cosine for
* @param mathContext the {@link MathContext} used for the result
* @return the calculated cosine {@link BigDecimal} with the precision specified in the mathContext
* @throws UnsupportedOperationException if the {@link MathContext} has unlimited precision
*/
public static BigDecimal cos(BigDecimal x, MathContext mathContext) {
checkMathContext(mathContext);
MathContext mc = new MathContext(mathContext.getPrecision() + 6, mathContext.getRoundingMode());
if (x.abs().compareTo(ROUGHLY_TWO_PI) > 0) {
MathContext mc2 = new MathContext(mc.getPrecision() + 4, mathContext.getRoundingMode());
BigDecimal twoPi = TWO.multiply(pi(mc2), mc2);
x = x.remainder(twoPi, mc2);
}
BigDecimal result = CosCalculator.INSTANCE.calculate(x, mc);
return round(result, mathContext);
}
/**
* Calculates the arc cosine (inverted cosine) of {@link BigDecimal} x.
*
* See: Wikipedia: Arccosine
*
* @param x the {@link BigDecimal} to calculate the arc cosine for
* @param mathContext the {@link MathContext} used for the result
* @return the calculated arc sine {@link BigDecimal} with the precision specified in the mathContext
* @throws ArithmeticException if x > 1 or x < -1
* @throws UnsupportedOperationException if the {@link MathContext} has unlimited precision
*/
public static BigDecimal acos(BigDecimal x, MathContext mathContext) {
checkMathContext(mathContext);
if (x.compareTo(ONE) > 0) {
throw new ArithmeticException("Illegal acos(x) for x > 1: x = " + x);
}
if (x.compareTo(MINUS_ONE) < 0) {
throw new ArithmeticException("Illegal acos(x) for x < -1: x = " + x);
}
MathContext mc = new MathContext(mathContext.getPrecision() + 6, mathContext.getRoundingMode());
BigDecimal result = pi(mc).divide(TWO, mc).subtract(asin(x, mc));
return round(result, mathContext);
}
/**
* Calculates the tangens of {@link BigDecimal} x.
*
* See: Wikipedia: Tangens
*
* @param x the {@link BigDecimal} to calculate the tangens for
* @param mathContext the {@link MathContext} used for the result
* @return the calculated tangens {@link BigDecimal} with the precision specified in the mathContext
* @throws UnsupportedOperationException if the {@link MathContext} has unlimited precision
*/
public static BigDecimal tan(BigDecimal x, MathContext mathContext) {
checkMathContext(mathContext);
if (x.signum() == 0) {
return ZERO;
}
MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode());
BigDecimal result = sin(x, mc).divide(cos(x, mc), mc);
return round(result, mathContext);
}
/**
* Calculates the arc tangens (inverted tangens) of {@link BigDecimal} x.
*
*
*
* @param x the {@link BigDecimal} to calculate the arc tangens for
* @param mathContext the {@link MathContext} used for the result
* @return the calculated arc tangens {@link BigDecimal} with the precision specified in the mathContext
* @throws UnsupportedOperationException if the {@link MathContext} has unlimited precision
*/
public static BigDecimal atan(BigDecimal x, MathContext mathContext) {
checkMathContext(mathContext);
MathContext mc = new MathContext(mathContext.getPrecision() + 6, mathContext.getRoundingMode());
x = x.divide(sqrt(ONE.add(x.multiply(x, mc)), mc), mc);
BigDecimal result = asin(x, mc);
return round(result, mathContext);
}
/**
* Calculates the arc tangens (inverted tangens) of {@link BigDecimal} y / x in the range -pi to pi.
*
* This is useful to calculate the angle theta from the conversion of rectangular
* coordinates (x
, y
) to polar coordinates (r, theta).
*
* See: Wikipedia: Atan2
*
* @param y the {@link BigDecimal}
* @param x the {@link BigDecimal}
* @param mathContext the {@link MathContext} used for the result
* @return the calculated arc tangens {@link BigDecimal} with the precision specified in the mathContext
* @throws ArithmeticException if x = 0 and y = 0
* @throws UnsupportedOperationException if the {@link MathContext} has unlimited precision
*/
public static BigDecimal atan2(BigDecimal y, BigDecimal x, MathContext mathContext) {
checkMathContext(mathContext);
MathContext mc = new MathContext(mathContext.getPrecision() + 3, mathContext.getRoundingMode());
if (x.signum() > 0) { // x > 0
return atan(y.divide(x, mc), mathContext);
} else if (x.signum() < 0) {
if (y.signum() > 0) { // x < 0 && y > 0
return atan(y.divide(x, mc), mc).add(pi(mc), mathContext);
} else if (y.signum() < 0) { // x < 0 && y < 0
return atan(y.divide(x, mc), mc).subtract(pi(mc), mathContext);
} else { // x < 0 && y = 0
return pi(mathContext);
}
} else {
if (y.signum() > 0) { // x == 0 && y > 0
return pi(mc).divide(TWO, mathContext);
} else if (y.signum() < 0) { // x == 0 && y < 0
return pi(mc).divide(TWO, mathContext).negate();
} else {
throw new ArithmeticException("Illegal atan2(y, x) for x = 0; y = 0");
}
}
}
/**
* Calculates the cotangens of {@link BigDecimal} x.
*
* See: Wikipedia: Cotangens
*
* @param x the {@link BigDecimal} to calculate the cotangens for
* @param mathContext the {@link MathContext} used for the result
* @return the calculated cotanges {@link BigDecimal} with the precision specified in the mathContext
* @throws ArithmeticException if x = 0
* @throws UnsupportedOperationException if the {@link MathContext} has unlimited precision
*/
public static BigDecimal cot(BigDecimal x, MathContext mathContext) {
checkMathContext(mathContext);
if (x.signum() == 0) {
throw new ArithmeticException("Illegal cot(x) for x = 0");
}
MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode());
BigDecimal result = cos(x, mc).divide(sin(x, mc), mc);
return round(result, mathContext);
}
/**
* Calculates the inverse cotangens (arc cotangens) of {@link BigDecimal} x.
*
*
*
* @param x the {@link BigDecimal} to calculate the arc cotangens for
* @param mathContext the {@link MathContext} used for the result
* @return the calculated arc cotangens {@link BigDecimal} with the precision specified in the mathContext
* @throws UnsupportedOperationException if the {@link MathContext} has unlimited precision
*/
public static BigDecimal acot(BigDecimal x, MathContext mathContext) {
checkMathContext(mathContext);
MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode());
BigDecimal result = pi(mc).divide(TWO, mc).subtract(atan(x, mc));
return round(result, mathContext);
}
/**
* Calculates the hyperbolic sine of {@link BigDecimal} x.
*
* See: Wikipedia: Hyperbolic function
*
* @param x the {@link BigDecimal} to calculate the hyperbolic sine for
* @param mathContext the {@link MathContext} used for the result
* @return the calculated hyperbolic sine {@link BigDecimal} with the precision specified in the mathContext
* @throws UnsupportedOperationException if the {@link MathContext} has unlimited precision
*/
public static BigDecimal sinh(BigDecimal x, MathContext mathContext) {
checkMathContext(mathContext);
MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode());
BigDecimal result = SinhCalculator.INSTANCE.calculate(x, mc);
return round(result, mathContext);
}
/**
* Calculates the hyperbolic cosine of {@link BigDecimal} x.
*
* See: Wikipedia: Hyperbolic function
*
* @param x the {@link BigDecimal} to calculate the hyperbolic cosine for
* @param mathContext the {@link MathContext} used for the result
* @return the calculated hyperbolic cosine {@link BigDecimal} with the precision specified in the mathContext
* @throws UnsupportedOperationException if the {@link MathContext} has unlimited precision
*/
public static BigDecimal cosh(BigDecimal x, MathContext mathContext) {
checkMathContext(mathContext);
MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode());
BigDecimal result = CoshCalculator.INSTANCE.calculate(x, mc);
return round(result, mathContext);
}
/**
* Calculates the hyperbolic tangens of {@link BigDecimal} x.
*
* See: Wikipedia: Hyperbolic function
*
* @param x the {@link BigDecimal} to calculate the hyperbolic tangens for
* @param mathContext the {@link MathContext} used for the result
* @return the calculated hyperbolic tangens {@link BigDecimal} with the precision specified in the mathContext
* @throws UnsupportedOperationException if the {@link MathContext} has unlimited precision
*/
public static BigDecimal tanh(BigDecimal x, MathContext mathContext) {
checkMathContext(mathContext);
MathContext mc = new MathContext(mathContext.getPrecision() + 6, mathContext.getRoundingMode());
BigDecimal result = sinh(x, mc).divide(cosh(x, mc), mc);
return round(result, mathContext);
}
/**
* Calculates the hyperbolic cotangens of {@link BigDecimal} x.
*
* See: Wikipedia: Hyperbolic function
*
* @param x the {@link BigDecimal} to calculate the hyperbolic cotangens for
* @param mathContext the {@link MathContext} used for the result
* @return the calculated hyperbolic cotangens {@link BigDecimal} with the precision specified in the mathContext
* @throws UnsupportedOperationException if the {@link MathContext} has unlimited precision
*/
public static BigDecimal coth(BigDecimal x, MathContext mathContext) {
checkMathContext(mathContext);
MathContext mc = new MathContext(mathContext.getPrecision() + 6, mathContext.getRoundingMode());
BigDecimal result = cosh(x, mc).divide(sinh(x, mc), mc);
return round(result, mathContext);
}
/**
* Calculates the arc hyperbolic sine (inverse hyperbolic sine) of {@link BigDecimal} x.
*
* See: Wikipedia: Hyperbolic function
*
* @param x the {@link BigDecimal} to calculate the arc hyperbolic sine for
* @param mathContext the {@link MathContext} used for the result
* @return the calculated arc hyperbolic sine {@link BigDecimal} with the precision specified in the mathContext
* @throws UnsupportedOperationException if the {@link MathContext} has unlimited precision
*/
public static BigDecimal asinh(BigDecimal x, MathContext mathContext) {
checkMathContext(mathContext);
MathContext mc = new MathContext(mathContext.getPrecision() + 10, mathContext.getRoundingMode());
BigDecimal result = log(x.add(sqrt(x.multiply(x, mc).add(ONE, mc), mc)), mc);
return round(result, mathContext);
}
/**
* Calculates the arc hyperbolic cosine (inverse hyperbolic cosine) of {@link BigDecimal} x.
*
* See: Wikipedia: Hyperbolic function
*
* @param x the {@link BigDecimal} to calculate the arc hyperbolic cosine for
* @param mathContext the {@link MathContext} used for the result
* @return the calculated arc hyperbolic cosine {@link BigDecimal} with the precision specified in the mathContext
* @throws UnsupportedOperationException if the {@link MathContext} has unlimited precision
*/
public static BigDecimal acosh(BigDecimal x, MathContext mathContext) {
checkMathContext(mathContext);
MathContext mc = new MathContext(mathContext.getPrecision() + 6, mathContext.getRoundingMode());
BigDecimal result = log(x.add(sqrt(x.multiply(x).subtract(ONE), mc)), mc);
return round(result, mathContext);
}
/**
* Calculates the arc hyperbolic tangens (inverse hyperbolic tangens) of {@link BigDecimal} x.
*
* See: Wikipedia: Hyperbolic function
*
* @param x the {@link BigDecimal} to calculate the arc hyperbolic tangens for
* @param mathContext the {@link MathContext} used for the result
* @return the calculated arc hyperbolic tangens {@link BigDecimal} with the precision specified in the mathContext
* @throws UnsupportedOperationException if the {@link MathContext} has unlimited precision
*/
public static BigDecimal atanh(BigDecimal x, MathContext mathContext) {
if (x.compareTo(BigDecimal.ONE) >= 0) {
throw new ArithmeticException("Illegal atanh(x) for x >= 1: x = " + x);
}
if (x.compareTo(MINUS_ONE) <= 0) {
throw new ArithmeticException("Illegal atanh(x) for x <= -1: x = " + x);
}
checkMathContext(mathContext);
MathContext mc = new MathContext(mathContext.getPrecision() + 6, mathContext.getRoundingMode());
BigDecimal result = log(ONE.add(x).divide(ONE.subtract(x), mc), mc).multiply(ONE_HALF);
return round(result, mathContext);
}
/**
* Calculates the arc hyperbolic cotangens (inverse hyperbolic cotangens) of {@link BigDecimal} x.
*
* See: Wikipedia: Hyperbolic function
*
* @param x the {@link BigDecimal} to calculate the arc hyperbolic cotangens for
* @param mathContext the {@link MathContext} used for the result
* @return the calculated arc hyperbolic cotangens {@link BigDecimal} with the precision specified in the mathContext
* @throws UnsupportedOperationException if the {@link MathContext} has unlimited precision
*/
public static BigDecimal acoth(BigDecimal x, MathContext mathContext) {
checkMathContext(mathContext);
MathContext mc = new MathContext(mathContext.getPrecision() + 6, mathContext.getRoundingMode());
BigDecimal result = log(x.add(ONE).divide(x.subtract(ONE), mc), mc).multiply(ONE_HALF);
return round(result, mathContext);
}
private static void checkMathContext (MathContext mathContext) {
if (mathContext.getPrecision() == 0) {
throw new UnsupportedOperationException("Unlimited MathContext not supported");
}
}
}