scalismo.ui.model.properties.Uncertainty.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright (C) 2016 University of Basel, Graphics and Vision Research Group
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package scalismo.ui.model.properties
import scalismo.geometry.EuclideanVector._
import scalismo.geometry._
import scalismo.statisticalmodel.MultivariateNormalDistribution
object Uncertainty {
val DefaultAxes = List(EuclideanVector3D(1, 0, 0), EuclideanVector3D(0, 1, 0), EuclideanVector3D(0, 0, 1))
//noinspection VarCouldBeVal
/* This is a global variable that can be set by developers using the library.
* The "noinspection" comment suppresses a "var could be val" warning from IntelliJ IDEA.
*/
var DefaultSigmas: List[Double] = List(1, 1, 1)
//noinspection VarCouldBeVal
/* This is a global variable that can be set by developers using the library.
* The "noinspection" comment suppresses a "var could be val" warning from IntelliJ IDEA.
*/
var DefaultUncertainty: Uncertainty = Uncertainty(DefaultAxes, DefaultSigmas)
def apply(distribution: MultivariateNormalDistribution): Uncertainty = {
val (axes, sigmas) = distribution.principalComponents.toList.map {
case (a, v) => (parametricToConcrete3D(EuclideanVector[_3D](a.toArray)), Math.sqrt(v))
}.unzip
Uncertainty(axes, sigmas)
}
}
case class Uncertainty(axes: List[EuclideanVector[_3D]], sigmas: List[Double]) {
require(axes.length == 3 && sigmas.length == 3)
// FIXME: require that axes are perpendicular and have a norm of 1
def toMultivariateNormalDistribution: MultivariateNormalDistribution = {
val variances = sigmas.map(f => f * f)
val mean = EuclideanVector3D(0, 0, 0)
MultivariateNormalDistribution(mean.toBreezeVector, axes.map(_.toBreezeVector).zip(variances))
}
def rotationMatrix: SquareMatrix[_3D] = {
val candidate = SquareMatrix[_3D](axes.flatMap(_.toArray).toArray)
if (breeze.linalg.det(candidate.toBreezeMatrix) < 0) {
// improper rotation matrix
SquareMatrix(candidate.data.map { f =>
-f
})
} else candidate
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy