All Downloads are FREE. Search and download functionalities are using the official Maven repository.

scalismo.common.interpolation.BSplineCoefficients Maven / Gradle / Ivy

There is a newer version: 1.0-RC1
Show newest version
/*
 * This code adapted the code by Philippe Thevenaz, made publically available.
 * See copyright information below
 */

/*=====================================================================
 | Version: July 6, 2011
 \=====================================================================*/

/*=====================================================================
 | EPFL/STI/IMT/LIB
 | Philippe Thevenaz
 | BM-Ecublens 4.137
 | CH-1015 Lausanne VD
 | Switzerland
 |
 | phone (CET): +41(21)693.51.61
 | fax: +41(21)693.68.10
 | RFC-822: [email protected]
 | X-400: /C=ch/A=400net/P=switch/O=epfl/S=thevenaz/G=philippe/
 | URL: http://bigwww.epfl.ch/
 \=====================================================================*/

/*===================================================================
 | This work is based on the following paper:
 |
 | Michael Unser
 | Splines: A Perfect Fit for Signal and Image Processing
 | IEEE Signal Processing Magazine
 | vol. 16, no. 6, pp. 22-38, November 1999
 |
 | This paper is available on-line at
 | http://bigwww.epfl.ch/publications/unser9902.html
 |
 | Other relevant on-line publications are available at
 | http://bigwww.epfl.ch/publications/
 \==================================================================*/

/*====================================================================
 | See the companion file "Differentials_.html" for additional help
 |
 | You'll be free to use this software for research purposes, but you should not
 | redistribute it without our consent. In addition, we expect you to include a
 | citation or acknowlegment whenever you present or publish results that are
 | based on it.
 \===================================================================*/

package scalismo.common.interpolation;

public class BSplineCoefficients {


  private static float getInitialAntiCausalCoefficientMirrorOnBounds(float[] c,
                                                                     float z, float tolerance) {
    return (float) ((z * c[c.length - 2] + c[c.length - 1]) * z / (z * z - 1.0));
  } /* end getInitialAntiCausalCoefficientMirrorOnBounds */

  /*------------------------------------------------------------------*/
  private static float getInitialCausalCoefficientMirrorOnBounds(float[] c, float z,
                                                                 float tolerance) {
    float z1 = z, zn = (float) Math.pow(z, c.length - 1);
    float sum = c[0] + zn * c[c.length - 1];
    int horizon = c.length;

    if (0.0 < tolerance) {
      horizon = 2 + (int) (Math.log(tolerance) / Math.log(Math.abs(z)));
      horizon = (horizon < c.length) ? (horizon) : (c.length);
    }
    zn = zn * zn;
    for (int n = 1; (n < (horizon - 1)); n++) {
      zn = zn / z;
      sum = sum + (z1 + zn) * c[n];
      z1 = z1 * z;
    }
    return (float) (sum / (1.0 - Math.pow(z, 2 * c.length - 2)));
  } /* end getInitialCausalCoefficientMirrorOnBounds */


  public static void getSplineInterpolationCoefficients(int degree, float[] c) throws Exception {

    float z[] = null;
    if (degree == 0 || degree == 1) {
      z = new float[0];
    } else if (degree == 2) {
      z = new float[1];
      z[0] = (float) (Math.sqrt(8.0) - 3.0);
    } else if (degree == 3) {
      z = new float[1];
      z[0] = (float) (Math.sqrt(3.0) - 2.0);
    } else {
      throw new Exception("SplineOrder must be between 0 and 3");
    }

    float tolerance = 0;//1.;//  Float.intBitsToFloat((int)0x33FFFFFF);


    float lambda = 1;

    if (c.length == 1) {
      return;
    }
    for (int k = 0; (k < z.length); k++) {
      lambda = lambda * (1 - z[k]) * (1 - 1 / z[k]);
    }
    for (int n = 0; (n < c.length); n++) {
      c[n] = c[n] * lambda;
    }
    for (int k = 0; (k < z.length); k++) {
      c[0] = getInitialCausalCoefficientMirrorOnBounds(c, z[k], tolerance);
      for (int n = 1; (n < c.length); n++) {
        c[n] = c[n] + z[k] * c[n - 1];
      }
      c[c.length - 1] = getInitialAntiCausalCoefficientMirrorOnBounds(c,
          z[k], tolerance);
      for (int n = c.length - 2; (0 <= n); n--) {
        c[n] = z[k] * (c[n + 1] - c[n]);
      }
    }
  } /* end getSplineInterpolation */
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy