
scalismo.registration.MeanSquaresMetric.scala Maven / Gradle / Ivy
/*
* Copyright 2015 University of Basel, Graphics and Vision Research Group
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package scalismo.registration
import scalismo.common.{DifferentiableField, Field, Scalar}
import scalismo.geometry.NDSpace
import scalismo.numerics.Sampler
import scalismo.transformations.TransformationSpace
/**
* The mean squares image to image metric.
* It is implemented as the squared loss function in terms of the pointwise pixel differences.
*/
case class MeanSquaresMetric[D: NDSpace, A: Scalar](fixedImage: Field[D, A],
movingImage: DifferentiableField[D, A],
transformationSpace: TransformationSpace[D],
sampler: Sampler[D])
extends MeanPointwiseLossMetric[D, A](fixedImage, movingImage, transformationSpace, sampler) {
val scalar = Scalar[A]
override val ndSpace = implicitly[NDSpace[D]]
override protected def lossFunction(v: A): Double = {
val value = scalar.toDouble(v)
value * value;
}
override protected def lossFunctionDerivative(v: A): Double = {
2.0 * scalar.toDouble(v)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy