All Downloads are FREE. Search and download functionalities are using the official Maven repository.

cn.hutool.core.text.Simhash Maven / Gradle / Ivy

There is a newer version: 5.8.33
Show newest version
package cn.hutool.core.text;

import cn.hutool.core.lang.hash.MurmurHash;

import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.locks.StampedLock;

/**
 * 

* Simhash是一种局部敏感hash,用于海量文本去重。
* 算法实现来自:https://github.com/xlturing/Simhash4J *

* *

* 局部敏感hash定义:假定两个字符串具有一定的相似性,在hash之后,仍然能保持这种相似性,就称之为局部敏感hash。 *

* * @author Looly, litaoxiao * @since 4.3.3 */ public class Simhash { private final int bitNum = 64; /** 存储段数,默认按照4段进行simhash存储 */ private final int fracCount; private final int fracBitNum; /** 汉明距离的衡量标准,小于此距离标准表示相似 */ private final int hammingThresh; /** 按照分段存储simhash,查找更快速 */ private final List>> storage; private final StampedLock lock = new StampedLock(); /** * 构造 */ public Simhash() { this(4, 3); } /** * 构造 * * @param fracCount 存储段数 * @param hammingThresh 汉明距离的衡量标准 */ public Simhash(int fracCount, int hammingThresh) { this.fracCount = fracCount; this.fracBitNum = bitNum / fracCount; this.hammingThresh = hammingThresh; this.storage = new ArrayList<>(fracCount); for (int i = 0; i < fracCount; i++) { storage.add(new HashMap<>()); } } /** * 指定文本计算simhash值 * * @param segList 分词的词列表 * @return Hash值 */ public long hash(Collection segList) { final int bitNum = this.bitNum; // 按照词语的hash值,计算simHashWeight(低位对齐) final int[] weight = new int[bitNum]; long wordHash; for (CharSequence seg : segList) { wordHash = MurmurHash.hash64(seg); for (int i = 0; i < bitNum; i++) { if (((wordHash >> i) & 1) == 1) weight[i] += 1; else weight[i] -= 1; } } // 计算得到Simhash值 final StringBuilder sb = new StringBuilder(); for (int i = 0; i < bitNum; i++) { sb.append((weight[i] > 0) ? 1 : 0); } return new BigInteger(sb.toString(), 2).longValue(); } /** * 判断文本是否与已存储的数据重复 * * @param segList 文本分词后的结果 * @return 是否重复 */ public boolean equals(Collection segList) { long simhash = hash(segList); final List fracList = splitSimhash(simhash); final int hammingThresh = this.hammingThresh; String frac; Map> fracMap; final long stamp = this.lock.readLock(); try { for (int i = 0; i < fracCount; i++) { frac = fracList.get(i); fracMap = storage.get(i); if (fracMap.containsKey(frac)) { for (Long simhash2 : fracMap.get(frac)) { // 当汉明距离小于标准时相似 if (hamming(simhash, simhash2) < hammingThresh) { return true; } } } } } finally { this.lock.unlockRead(stamp); } return false; } /** * 按照(frac, 《simhash, content》)索引进行存储 * * @param simhash Simhash值 */ public void store(Long simhash) { final int fracCount = this.fracCount; final List>> storage = this.storage; final List lFrac = splitSimhash(simhash); String frac; Map> fracMap; final long stamp = this.lock.writeLock(); try { for (int i = 0; i < fracCount; i++) { frac = lFrac.get(i); fracMap = storage.get(i); if (fracMap.containsKey(frac)) { fracMap.get(frac).add(simhash); } else { final List ls = new ArrayList<>(); ls.add(simhash); fracMap.put(frac, ls); } } } finally { this.lock.unlockWrite(stamp); } } //------------------------------------------------------------------------------------------------------ Private method start /** * 计算汉明距离 * * @param s1 值1 * @param s2 值2 * @return 汉明距离 */ private int hamming(Long s1, Long s2) { final int bitNum = this.bitNum; int dis = 0; for (int i = 0; i < bitNum; i++) { if ((s1 >> i & 1) != (s2 >> i & 1)) dis++; } return dis; } /** * 将simhash分成n段 * * @param simhash Simhash值 * @return N段Simhash */ private List splitSimhash(Long simhash) { final int bitNum = this.bitNum; final int fracBitNum = this.fracBitNum; final List ls = new ArrayList<>(); final StringBuilder sb = new StringBuilder(); for (int i = 0; i < bitNum; i++) { sb.append(simhash >> i & 1); if ((i + 1) % fracBitNum == 0) { ls.add(sb.toString()); sb.setLength(0); } } return ls; } //------------------------------------------------------------------------------------------------------ Private method end }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy