![JAR search and dependency download from the Maven repository](/logo.png)
co.cask.hydrator.plugin.spark.Tokenizer Maven / Gradle / Ivy
/*
* Copyright © 2016 Cask Data, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
package co.cask.hydrator.plugin.spark;
import co.cask.cdap.api.annotation.Description;
import co.cask.cdap.api.annotation.Name;
import co.cask.cdap.api.annotation.Plugin;
import co.cask.cdap.api.data.format.StructuredRecord;
import co.cask.cdap.api.data.schema.Schema;
import co.cask.cdap.api.plugin.PluginConfig;
import co.cask.cdap.etl.api.PipelineConfigurer;
import co.cask.cdap.etl.api.batch.SparkCompute;
import co.cask.cdap.etl.api.batch.SparkExecutionPluginContext;
import co.cask.cdap.format.StructuredRecordStringConverter;
import com.google.common.base.Preconditions;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.ml.feature.RegexTokenizer;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;
import java.util.ArrayList;
import java.util.List;
/**
* Tokenizer-SparkCompute that breaks text(such as sentence) into individual terms(usually words)
*/
@Plugin(type = SparkCompute.PLUGIN_TYPE)
@Name(Tokenizer.PLUGIN_NAME)
@Description("Used to tokenize text(such as sentence) into individual terms(usually words)")
public class Tokenizer extends SparkCompute {
public static final String PLUGIN_NAME = "Tokenizer";
private Config config;
private Schema outputSchema;
public Tokenizer(Config config) {
this.config = config;
}
@Override
public void configurePipeline(PipelineConfigurer pipelineConfigurer) throws IllegalArgumentException {
super.configurePipeline(pipelineConfigurer);
Schema inputSchema = pipelineConfigurer.getStageConfigurer().getInputSchema();
if (inputSchema != null && inputSchema.getField(config.columnToBeTokenized) != null) {
Schema schema = inputSchema.getField(config.columnToBeTokenized).getSchema();
Schema.Type type = schema.isNullable() ? schema.getNonNullable().getType() : schema.getType();
Preconditions.checkArgument(type == Schema.Type.STRING, "Column to be tokenized %s must be of type String, " +
"but was of type %s.", config.columnToBeTokenized, type);
}
}
@Override
public void initialize(SparkExecutionPluginContext context) throws Exception {
super.initialize(context);
}
@Override
public JavaRDD transform(SparkExecutionPluginContext context,
JavaRDD input) throws Exception {
JavaSparkContext javaSparkContext = context.getSparkContext();
SQLContext sqlContext = new SQLContext(javaSparkContext);
if (input == null) {
return context.getSparkContext().emptyRDD();
}
outputSchema = outputSchema != null ? outputSchema : config.getOutputSchema(input.first().getSchema(),
config.outputColumn);
JavaRDD javardd = input.map(new Function() {
@Override
public String call(StructuredRecord structuredRecord) throws Exception {
return StructuredRecordStringConverter.toJsonString(structuredRecord);
}
});
DataFrame sentenceDataFrame = sqlContext.read().json(javardd);
RegexTokenizer regexTokenizer = new RegexTokenizer().setInputCol(config.columnToBeTokenized)
.setOutputCol(config.outputColumn)
.setPattern(config.patternSeparator);
DataFrame tokenizedDataFrame = regexTokenizer.transform(sentenceDataFrame);
JavaRDD output = tokenizedDataFrame.toJSON().toJavaRDD()
.map(new Function() {
@Override
public StructuredRecord call(String record) throws Exception {
return StructuredRecordStringConverter.fromJsonString(record, outputSchema);
}
});
return output;
}
/**
* Configuration for the Tokenizer Plugin.
*/
public static class Config extends PluginConfig {
@Description("Column on which tokenization is to be done")
private final String columnToBeTokenized;
@Description("Pattern Separator")
private final String patternSeparator;
@Description("Output column name for tokenized data")
private final String outputColumn;
public Config(String outputColumn, String columnToBeTokenized, String patternSeparator) {
this.columnToBeTokenized = columnToBeTokenized;
this.patternSeparator = patternSeparator;
this.outputColumn = outputColumn;
}
private Schema getOutputSchema(Schema inputSchema, String fieldName) {
List fields = new ArrayList<>(inputSchema.getFields());
fields.add(Schema.Field.of(fieldName, Schema.arrayOf(Schema.of(Schema.Type.STRING))));
return Schema.recordOf("record", fields);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy