All Downloads are FREE. Search and download functionalities are using the official Maven repository.

drv.List.drv Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists, and queues with a small memory footprint and fast operations; it provides also big (64-bit) arrays, sets, and lists, sorting algorithms, fast, practical I/O classes for binary and text files, and facilities for memory mapping large files. This jar (fastutil-core.jar) contains data structures based on integers, longs, doubles, and objects, only; fastutil.jar contains all classes. If you have both jars in your dependencies, this jar should be excluded.

The newest version!
/*
 * Copyright (C) 2002-2022 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


package PACKAGE;

import java.util.Spliterator;
import java.util.List;
import static it.unimi.dsi.fastutil.Size64.sizeOf;

#if ! KEYS_USE_REFERENCE_EQUALITY
/** A type-specific {@link List}; provides some additional methods that use polymorphism to avoid (un)boxing.
 *
 * 

Note that this type-specific interface extends {@link Comparable}: it is expected that implementing * classes perform a lexicographical comparison using the standard operator "less then" for primitive types, * and the usual {@link Comparable#compareTo(Object) compareTo()} method for objects. * *

Additionally, this interface strengthens {@link #iterator()}, {@link #listIterator()}, * {@link #listIterator(int)} and {@link #subList(int,int)}. The former had been already * strengthened upstream, but unfortunately {@link List} re-specifies it. * *

Besides polymorphic methods, this interfaces specifies methods to copy into an array or remove contiguous * sublists. Although the abstract implementation of this interface provides simple, one-by-one implementations * of these methods, it is expected that concrete implementation override them with optimized versions. * * @see List */ public interface LIST KEY_GENERIC extends List, Comparable>, COLLECTION KEY_GENERIC { #else /** A type-specific {@link List}; provides some additional methods that use polymorphism to avoid (un)boxing. * *

Additionally, this interface strengthens {@link #iterator()}, {@link #listIterator()}, * {@link #listIterator(int)} and {@link #subList(int,int)}. The former had been already * strengthened upstream, but unfortunately {@link List} re-specifies it. * *

This interface specifies reference equality semantics (members will be compared equal with * {@code ==} instead of {@link Object#equals(Object) equals}), which may result in breaks in contract * if attempted to be used with non reference-equality semantics based {@link List}s. For example, a * {@code aReferenceList.equals(aObjectList)} may return different a different result then * {@code aObjectList.equals(aReferenceList)}, in violation of {@link Object#equals equals}'s contract * requiring it being symmetric. * *

Besides polymorphic methods, this interfaces specifies methods to copy into an array or remove contiguous * sublists. Although the abstract implementation of this interface provides simple, one-by-one implementations * of these methods, it is expected that concrete implementation override them with optimized versions. * * @see List */ public interface LIST KEY_GENERIC extends List, COLLECTION KEY_GENERIC { #endif /** Returns a type-specific iterator on the elements of this list. * * @apiNote This specification strengthens the one given in {@link List#iterator()}. * It would not be normally necessary, but {@link java.lang.Iterable#iterator()} is bizarrily re-specified * in {@link List}. *

Also, this is generally the only {@code iterator} method subclasses should override. * * @return an iterator on the elements of this list. */ @Override KEY_LIST_ITERATOR KEY_GENERIC iterator(); /** Returns a type-specific spliterator on the elements of this list. * *

List spliterators must report at least {@link Spliterator#SIZED} and {@link Spliterator#ORDERED}. * *

See {@link java.util.List#spliterator()} for more documentation on the requirements * of the returned spliterator. * * @apiNote This specification strengthens the one given in * {@link java.util.Collection#spliterator()}, which was already * strengthened in the corresponding type-specific class, * but was weakened by the fact that this interface extends {@link List}. *

Also, this is generally the only {@code spliterator} method subclasses should override. * * @implSpec The default implementation returns a late-binding spliterator (see * {@link Spliterator} for documentation on what binding policies mean). *

    *
  • For {@link java.util.RandomAccess RandomAccess} lists, this will return a spliterator * that calls the type-specific {@link #get(int)} method on the appropriate indexes.
  • *
  • Otherwise, the spliterator returned will wrap this instance's type specific {@link #iterator}.
  • *
*

In either case, the spliterator reports {@link Spliterator#SIZED}, * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}. * * @implNote As the non-{@linkplain java.util.RandomAccess RandomAccess} case is based on the * iterator, and {@link java.util.Iterator} is an inherently linear API, the returned * spliterator will yield limited performance gains when run in parallel contexts, as the * returned spliterator's {@link Spliterator#trySplit() trySplit()} will have linear runtime. *

For {@link java.util.RandomAccess RandomAccess} lists, the parallel performance should * be reasonable assuming {@link #get(int)} is truly constant time like {@link java.util.RandomAccess * RandomAccess} suggests. * * @return {@inheritDoc} * @since 8.5.0 */ @Override #if SPLITERATOR_ASSURE_OVERRIDE abstract KEY_SPLITERATOR KEY_GENERIC spliterator(); #else default KEY_SPLITERATOR KEY_GENERIC spliterator() { if (this instanceof java.util.RandomAccess) { return new ABSTRACT_LIST.IndexBasedSpliterator KEY_GENERIC_DIAMOND(this, 0); } else { return SPLITERATORS.asSpliterator( iterator(), sizeOf(this), SPLITERATORS.LIST_SPLITERATOR_CHARACTERISTICS); } } #endif /** Returns a type-specific list iterator on the list. * * @see List#listIterator() */ @Override KEY_LIST_ITERATOR KEY_GENERIC listIterator(); /** Returns a type-specific list iterator on the list starting at a given index. * * @see List#listIterator(int) */ @Override KEY_LIST_ITERATOR KEY_GENERIC listIterator(int index); /** Returns a type-specific view of the portion of this list from the index {@code from}, inclusive, to the index {@code to}, exclusive. * * @apiNote This specification strengthens the one given in {@link List#subList(int,int)}. * * @see List#subList(int,int) */ @Override LIST KEY_GENERIC subList(int from, int to); /** Sets the size of this list. * *

If the specified size is smaller than the current size, the last elements are * discarded. Otherwise, they are filled with 0/{@code null}/{@code false}. * * @param size the new size. */ void size(int size); /** Copies (hopefully quickly) elements of this type-specific list into the given array. * * @param from the start index (inclusive). * @param a the destination array. * @param offset the offset into the destination array where to store the first element copied. * @param length the number of elements to be copied. */ void getElements(int from, KEY_TYPE a[], int offset, int length); /** Removes (hopefully quickly) elements of this type-specific list. * * @param from the start index (inclusive). * @param to the end index (exclusive). */ void removeElements(int from, int to); /** Add (hopefully quickly) elements to this type-specific list. * * @param index the index at which to add elements. * @param a the array containing the elements. */ void addElements(int index, KEY_GENERIC_TYPE a[]); /** Add (hopefully quickly) elements to this type-specific list. * * @param index the index at which to add elements. * @param a the array containing the elements. * @param offset the offset of the first element to add. * @param length the number of elements to add. */ void addElements(int index, KEY_GENERIC_TYPE a[], int offset, int length); /** Set (hopefully quickly) elements to match the array given. * @param a the array containing the elements. * @since 8.3.0 */ default void setElements(KEY_GENERIC_TYPE a[]) { setElements(0, a); } /** Set (hopefully quickly) elements to match the array given. * @param index the index at which to start setting elements. * @param a the array containing the elements. * @since 8.3.0 */ default void setElements(int index, KEY_GENERIC_TYPE a[]) { setElements(index, a, 0, a.length); } /** Set (hopefully quickly) elements to match the array given. * * Sets each in this list to the corresponding elements in the array, as if by *

	 * ListIterator iter = listIterator(index);
	 * int i = 0;
	 * while (i < length) {
	 *   iter.next();
	 *   iter.set(a[offset + i++]);
	 * }
	 * 
* However, the exact implementation may be more efficient, taking into account * whether random access is faster or not, or at the discretion of subclasses, * abuse internals. * * @param index the index at which to start setting elements. * @param a the array containing the elements * @param offset the offset of the first element to add. * @param length the number of elements to add. * @since 8.3.0 */ default void setElements(int index, KEY_GENERIC_TYPE a[], int offset, int length) { // We can't use AbstractList#ensureIndex, sadly. if (index < 0) throw new IndexOutOfBoundsException("Index (" + index + ") is negative"); if (index > size()) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than list size (" + (size()) + ")"); ARRAYS.ensureOffsetLength(a, offset, length); if (index + length > size()) throw new IndexOutOfBoundsException("End index (" + (index + length) + ") is greater than list size (" + size() + ")"); KEY_LIST_ITERATOR KEY_GENERIC iter = listIterator(index); int i = 0; while (i < length) { iter.NEXT_KEY(); iter.set(a[offset + i++]); } } #if KEYS_PRIMITIVE /** Appends the specified element to the end of this list (optional operation). * @see List#add(Object) */ @Override boolean add(KEY_TYPE key); /** Inserts the specified element at the specified position in this list (optional operation). * @see List#add(int,Object) */ void add(int index, KEY_TYPE key); /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default void add(int index, KEY_CLASS key) { add(index, KEY_CLASS2TYPE(key)); } /** Inserts all of the elements in the specified type-specific collection into this type-specific list at the specified position (optional operation). * @see List#addAll(int,java.util.Collection) */ boolean addAll(int index, COLLECTION c); /** Replaces the element at the specified position in this list with the specified element (optional operation). * @see List#set(int,Object) */ KEY_TYPE set(int index, KEY_TYPE k); /** * Replaces each element of this list with the result of applying the * operator to that element. * @param operator the operator to apply to each element. * @see java.util.List#replaceAll */ default void replaceAll(final METHOD_ARG_KEY_UNARY_OPERATOR operator) { final KEY_LIST_ITERATOR iter = listIterator(); while(iter.hasNext()) { iter.set(operator.KEY_OPERATOR_APPLY(iter.NEXT_KEY())); } } #if KEYS_INT_LONG_DOUBLE // Because our primitive UnaryOperator interface extends both the JDK's primitive // and object UnaryOperator interfaces, calling this method with it would be ambiguous. // This overload exists to pass it to the proper primitive overload. /** * Replaces each element of this list with the result of applying the * operator to that element. * *

WARNING: Overriding this method is almost always a mistake, as this * overload only exists to disambiguate. Instead, override the {@code replaceAll()} overload * that uses the JDK's primitive unary operator type (e.g. {@link java.util.function.IntUnaryOperator}). * *

If Java supported final default methods, this would be one, but sadly it does not. * *

If you checked and are overriding the version with {@code java.util.function.XUnaryOperator}, and * still see this warning, then your IDE is incorrectly conflating this method with the proper * method to override, and you can safely ignore this message. * * @param operator the operator to apply to each element * @see java.util.List#replaceAll * @since 8.5.0 */ default void replaceAll(final KEY_UNARY_OPERATOR operator) { replaceAll((METHOD_ARG_KEY_UNARY_OPERATOR) operator); } #elif KEYS_BYTE_CHAR_SHORT_FLOAT /** * Replaces each element of this list with the result of applying the * operator to that element, performing widening and narrowing primitive casts, * until all elements have been processed or the action * throws an exception. * * @param operator the operator to apply to each element * @see java.util.List#replaceAll * @since 8.5.0 * @implNote Unless the argument is type-specific, this method will introduce an intermediary * lambda to perform widening and narrowing casts. Please use the type-specific overload to avoid this overhead. */ default void replaceAll(final JDK_PRIMITIVE_UNARY_OPERATOR operator) { replaceAll(operator instanceof METHOD_ARG_KEY_UNARY_OPERATOR ? (METHOD_ARG_KEY_UNARY_OPERATOR) operator : x -> KEY_NARROWING(operator.JDK_PRIMITIVE_KEY_APPLY(x))); } #endif /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override @SuppressWarnings("boxing") default void replaceAll(final java.util.function.UnaryOperator operator) { java.util.Objects.requireNonNull(operator); // The instanceof and cast is required for performance. Without it, calls routed through this // overload using a primitive consumer would go through the slow lambda. replaceAll(operator instanceof METHOD_ARG_KEY_UNARY_OPERATOR ? (METHOD_ARG_KEY_UNARY_OPERATOR) operator : (METHOD_ARG_KEY_UNARY_OPERATOR) operator::apply); } /** Returns the element at the specified position in this list. * @see List#get(int) */ KEY_TYPE GET_KEY(int index); /** Returns the index of the first occurrence of the specified element in this list, or -1 if this list does not contain the element. * @see List#indexOf(Object) */ int indexOf(KEY_TYPE k); /** Returns the index of the last occurrence of the specified element in this list, or -1 if this list does not contain the element. * @see List#lastIndexOf(Object) */ int lastIndexOf(KEY_TYPE k); /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default boolean contains(final Object key) { return COLLECTION.super.contains(key); } /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default KEY_GENERIC_CLASS get(int index) { return KEY2OBJ(GET_KEY(index)); } /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default int indexOf(Object o) { return indexOf(KEY_OBJ2TYPE(o)); } /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default int lastIndexOf(Object o) { return lastIndexOf(KEY_OBJ2TYPE(o)); } /** {@inheritDoc} *

This method specification is a workaround for * bug 8177440. * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default boolean add(KEY_CLASS k) { return add(KEY_CLASS2TYPE(k)); } /** Removes the element at the specified position in this list (optional operation). * @see List#remove(int) */ KEY_TYPE REMOVE_KEY(int index); /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default boolean remove(final Object key) { return COLLECTION.super.remove(key); } /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default KEY_GENERIC_CLASS remove(int index) { return KEY2OBJ(REMOVE_KEY(index)); } /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default KEY_GENERIC_CLASS set(int index, KEY_CLASS k) { return KEY2OBJ(set(index, KEY_CLASS2TYPE(k))); } #endif /** Inserts all of the elements in the specified type-specific list into this type-specific list at the specified position (optional operation). * @apiNote This method exists only for the sake of efficiency: override are expected to use {@link #getElements}/{@link #addElements}. * @implSpec This method delegates to the one accepting a collection, but it might be implemented more efficiently. * @see List#addAll(int,Collection) */ default boolean addAll(int index, LIST KEY_EXTENDS_GENERIC l) { return addAll(index, (COLLECTION KEY_EXTENDS_GENERIC) l); } /** Appends all of the elements in the specified type-specific list to the end of this type-specific list (optional operation). * @implSpec This method delegates to the index-based version, passing {@link #size()} as first argument. * @see List#addAll(Collection) */ default boolean addAll(LIST KEY_EXTENDS_GENERIC l) { return addAll(size(), l); } /** Returns an immutable empty list. * * @return an immutable empty list. */ public static KEY_GENERIC LIST KEY_GENERIC of() { // Returning ImmutableList.EMPTY instead of LISTS.EMPTY_LIST to make dimorphic call site. // See https://github.com/vigna/fastutil/issues/183 return IMMUTABLE_LIST.of(); } /** Returns an immutable list with the element given. * * @param e the element that the returned list will contain. * @return an immutable list containing {@code e}. */ public static KEY_GENERIC LIST KEY_GENERIC of(final KEY_GENERIC_TYPE e) { return LISTS.singleton(e); } /** Returns an immutable list with the elements given. * * @param e0 the first element. * @param e1 the second element. * @return an immutable list containing {@code e0} and {@code e1}. */ public static KEY_GENERIC LIST KEY_GENERIC of(final KEY_GENERIC_TYPE e0, final KEY_GENERIC_TYPE e1) { return IMMUTABLE_LIST.of(e0, e1); } /** Returns an immutable list with the elements given. * * @param e0 the first element. * @param e1 the second element. * @param e2 the third element. * @return an immutable list containing {@code e0}, {@code e1}, and {@code e2}. */ public static KEY_GENERIC LIST KEY_GENERIC of(final KEY_GENERIC_TYPE e0, final KEY_GENERIC_TYPE e1, final KEY_GENERIC_TYPE e2) { return IMMUTABLE_LIST.of(e0, e1, e2); } /** Returns an immutable list with the elements given. * *

Note that this method does not perform a defensive copy. * * @param a a list of elements that will be used to initialize the immutable list. * @return an immutable list containing the elements of {@code a}. */ SUPPRESS_WARNINGS_KEY_UNCHECKED SAFE_VARARGS public static KEY_GENERIC LIST KEY_GENERIC of(final KEY_GENERIC_TYPE... a) { switch(a.length) { case 0: return of(); case 1: return of(a[0]); // Add cases of 2 and 3 if we ever have special logic for those. default: // fall through } return IMMUTABLE_LIST.of(a); } #if defined(KEY_COMPARATOR) && KEYS_PRIMITIVE /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override default void sort(final java.util.Comparator comparator) { sort(COMPARATORS.AS_KEY_COMPARATOR(comparator)); } /** Sort a list using a type-specific comparator. * *

Pass {@code null} to sort using natural ordering. * @see List#sort(java.util.Comparator) * * @implSpec The default implementation dumps the elements into an array using * {@link #toArray()}, sorts the array, then replaces all elements using the * {@link #setElements} function. * *

It is possible for this method to call {@link #unstableSort} if it can * determine that the results of a stable and unstable sort are completely equivalent. * This means if you override {@link #unstableSort}, it should not call this * method unless you override this method as well. * * @since 8.3.0 */ default void sort(final KEY_COMPARATOR comparator) { #if !(KEY_CLASS_Float || KEY_CLASS_Double) if (comparator == null) { // For non-floating point primitive types, when comparing naturally, // it is impossible to tell the difference between a stable and not-stable sort. // So just use the probably faster unstable sort. unstableSort(comparator); } else { KEY_TYPE[] elements = TO_KEY_ARRAY(); ARRAYS.stableSort(elements, comparator); setElements(elements); } #else KEY_TYPE[] elements = TO_KEY_ARRAY(); if (comparator == null) { ARRAYS.stableSort(elements); } else { ARRAYS.stableSort(elements, comparator); } setElements(elements); #endif } /** Sorts this list using a sort not assured to be stable. * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated default void unstableSort(final java.util.Comparator comparator) { unstableSort(COMPARATORS.AS_KEY_COMPARATOR(comparator)); } /** Sorts this list using a sort not assured to be stable. * *

Pass {@code null} to sort using natural ordering. * *

This differs from {@link List#sort(java.util.Comparator)} in that the results are * not assured to be stable, but may be a bit faster. * *

Unless a subclass specifies otherwise, the results of the method if the list is * concurrently modified during the sort are unspecified. * * @implSpec The default implementation dumps the elements into an array using * {@link #toArray()}, sorts the array, then replaces all elements using the * {@link #setElements} function. * * @since 8.3.0 */ default void unstableSort(final KEY_COMPARATOR comparator) { KEY_TYPE[] elements = TO_KEY_ARRAY(); if (comparator == null) { ARRAYS.unstableSort(elements); } else { ARRAYS.unstableSort(elements, comparator); } setElements(elements); } #else #if !KEYS_REFERENCE #error Assertion error: No KEY_COMPARATOR defined, but not a reference type. #endif /** Sorts this list using a sort assured to be stable. * *

Pass {@code null} to sort using natural ordering. * *

Unless a subclass specifies otherwise, the results of the method if the list is * concurrently modified during the sort are unspecified. * * @implSpec The default implementation dumps the elements into an array using * {@link #toArray()}, sorts the array, then replaces all elements using the * {@link #setElements} function. * * @since 8.5.0 */ @Override SUPPRESS_WARNINGS_KEY_UNCHECKED default void sort(final java.util.Comparator comparator) { KEY_GENERIC_TYPE[] elements = (KEY_GENERIC_TYPE[])toArray(); // Current stableSort implementation delegates to java.util.Arrays.sort for reference types, // so we aren't losing out on JDK's optimized Timsort. if (comparator == null) { ARRAYS.stableSort(elements); } else { ARRAYS.stableSort(elements, comparator); } setElements(elements); } /** Sorts this list using a sort not assured to be stable. * This differs from {@link List#sort(java.util.Comparator)} in that the results are * not assured to be stable, but may be a bit faster. * *

Pass {@code null} to sort using natural ordering. * *

Unless a subclass specifies otherwise, the results of the method if the list is * concurrently modified during the sort are unspecified. * * @implSpec The default implementation dumps the elements into an array using * {@link #toArray()}, sorts the array, then replaces all elements using the * {@link #setElements} function. * * @since 8.3.0 */ SUPPRESS_WARNINGS_KEY_UNCHECKED default void unstableSort(final java.util.Comparator comparator) { KEY_GENERIC_TYPE[] elements = (KEY_GENERIC_TYPE[])toArray(); if (comparator == null) { ARRAYS.unstableSort(elements); } else { ARRAYS.unstableSort(elements, comparator); } setElements(elements); } #endif }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy