All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.fastutil.ints.Int2IntOpenHashMap Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists, and queues with a small memory footprint and fast operations; it provides also big (64-bit) arrays, sets, and lists, sorting algorithms, fast, practical I/O classes for binary and text files, and facilities for memory mapping large files. This jar (fastutil-core.jar) contains data structures based on integers, longs, doubles, and objects, only; fastutil.jar contains all classes. If you have both jars in your dependencies, this jar should be excluded.

The newest version!
/*
	* Copyright (C) 2002-2022 Sebastiano Vigna
	*
	* Licensed under the Apache License, Version 2.0 (the "License");
	* you may not use this file except in compliance with the License.
	* You may obtain a copy of the License at
	*
	*     http://www.apache.org/licenses/LICENSE-2.0
	*
	* Unless required by applicable law or agreed to in writing, software
	* distributed under the License is distributed on an "AS IS" BASIS,
	* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
	* See the License for the specific language governing permissions and
	* limitations under the License.
	*/
package it.unimi.dsi.fastutil.ints;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Map;
import java.util.Arrays;
import java.util.NoSuchElementException;
import java.util.function.Consumer;
import it.unimi.dsi.fastutil.objects.AbstractObjectSet;
import it.unimi.dsi.fastutil.objects.ObjectIterator;
import it.unimi.dsi.fastutil.objects.ObjectSpliterator;
import it.unimi.dsi.fastutil.objects.ObjectSpliterators;
/** A type-specific hash map with a fast, small-footprint implementation.
	*
	* 

Instances of this class use a hash table to represent a map. The table is * filled up to a specified load factor, and then doubled in size to * accommodate new entries. If the table is emptied below one fourth * of the load factor, it is halved in size; however, the table is never reduced to a * size smaller than that at creation time: this approach makes it * possible to create maps with a large capacity in which insertions and * deletions do not cause immediately rehashing. Moreover, halving is * not performed when deleting entries from an iterator, as it would interfere * with the iteration process. * *

Note that {@link #clear()} does not modify the hash table size. * Rather, a family of {@linkplain #trim() trimming * methods} lets you control the size of the table; this is particularly useful * if you reuse instances of this class. * *

Entries returned by the type-specific {@link #entrySet()} method implement * the suitable type-specific {@link it.unimi.dsi.fastutil.Pair Pair} interface; * only values are mutable. * * @see Hash * @see HashCommon */ public class Int2IntOpenHashMap extends AbstractInt2IntMap implements java.io.Serializable, Cloneable, Hash { private static final long serialVersionUID = 0L; private static final boolean ASSERTS = false; /** The array of keys. */ protected transient int[] key; /** The array of values. */ protected transient int[] value; /** The mask for wrapping a position counter. */ protected transient int mask; /** Whether this map contains the key zero. */ protected transient boolean containsNullKey; /** The current table size. */ protected transient int n; /** Threshold after which we rehash. It must be the table size times {@link #f}. */ protected transient int maxFill; /** We never resize below this threshold, which is the construction-time {#n}. */ protected final transient int minN; /** Number of entries in the set (including the key zero, if present). */ protected int size; /** The acceptable load factor. */ protected final float f; /** Cached set of entries. */ protected transient FastEntrySet entries; /** Cached set of keys. */ protected transient IntSet keys; /** Cached collection of values. */ protected transient IntCollection values; /** Creates a new hash map. * *

The actual table size will be the least power of two greater than {@code expected}/{@code f}. * * @param expected the expected number of elements in the hash map. * @param f the load factor. */ public Int2IntOpenHashMap(final int expected, final float f) { if (f <= 0 || f >= 1) throw new IllegalArgumentException("Load factor must be greater than 0 and smaller than 1"); if (expected < 0) throw new IllegalArgumentException("The expected number of elements must be nonnegative"); this.f = f; minN = n = arraySize(expected, f); mask = n - 1; maxFill = maxFill(n, f); key = new int[n + 1]; value = new int[n + 1]; } /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * * @param expected the expected number of elements in the hash map. */ public Int2IntOpenHashMap(final int expected) { this(expected, DEFAULT_LOAD_FACTOR); } /** Creates a new hash map with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} entries * and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. */ public Int2IntOpenHashMap() { this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR); } /** Creates a new hash map copying a given one. * * @param m a {@link Map} to be copied into the new hash map. * @param f the load factor. */ public Int2IntOpenHashMap(final Map m, final float f) { this(m.size(), f); putAll(m); } /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given one. * * @param m a {@link Map} to be copied into the new hash map. */ public Int2IntOpenHashMap(final Map m) { this(m, DEFAULT_LOAD_FACTOR); } /** Creates a new hash map copying a given type-specific one. * * @param m a type-specific map to be copied into the new hash map. * @param f the load factor. */ public Int2IntOpenHashMap(final Int2IntMap m, final float f) { this(m.size(), f); putAll(m); } /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given type-specific one. * * @param m a type-specific map to be copied into the new hash map. */ public Int2IntOpenHashMap(final Int2IntMap m) { this(m, DEFAULT_LOAD_FACTOR); } /** Creates a new hash map using the elements of two parallel arrays. * * @param k the array of keys of the new hash map. * @param v the array of corresponding values in the new hash map. * @param f the load factor. * @throws IllegalArgumentException if {@code k} and {@code v} have different lengths. */ public Int2IntOpenHashMap(final int[] k, final int[] v, final float f) { this(k.length, f); if (k.length != v.length) throw new IllegalArgumentException("The key array and the value array have different lengths (" + k.length + " and " + v.length + ")"); for(int i = 0; i < k.length; i++) this.put(k[i], v[i]); } /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using the elements of two parallel arrays. * * @param k the array of keys of the new hash map. * @param v the array of corresponding values in the new hash map. * @throws IllegalArgumentException if {@code k} and {@code v} have different lengths. */ public Int2IntOpenHashMap(final int[] k, final int[] v) { this(k, v, DEFAULT_LOAD_FACTOR); } private int realSize() { return containsNullKey ? size - 1 : size; } /** Ensures that this map can hold a certain number of keys without rehashing. * * @param capacity a number of keys; there will be no rehashing unless * the map {@linkplain #size() size} exceeds this number. */ public void ensureCapacity(final int capacity) { final int needed = arraySize(capacity, f); if (needed > n) rehash(needed); } private void tryCapacity(final long capacity) { final int needed = (int)Math.min(1 << 30, Math.max(2, HashCommon.nextPowerOfTwo((long)Math.ceil(capacity / f)))); if (needed > n) rehash(needed); } private int removeEntry(final int pos) { final int oldValue = value[pos]; size--; shiftKeys(pos); if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return oldValue; } private int removeNullEntry() { containsNullKey = false; final int oldValue = value[n]; size--; if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return oldValue; } @Override public void putAll(Map m) { if (f <= .5) ensureCapacity(m.size()); // The resulting map will be sized for m.size() elements else tryCapacity(size() + m.size()); // The resulting map will be tentatively sized for size() + m.size() elements super.putAll(m); } private int find(final int k) { if (( (k) == (0) )) return containsNullKey ? n : -(n + 1); int curr; final int[] key = this.key; int pos; // The starting point. if (( (curr = key[pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (k) ) ) & mask]) == (0) )) return -(pos + 1); if (( (k) == (curr) )) return pos; // There's always an unused entry. while(true) { if (( (curr = key[pos = (pos + 1) & mask]) == (0) )) return -(pos + 1); if (( (k) == (curr) )) return pos; } } private void insert(final int pos, final int k, final int v) { if (pos == n) containsNullKey = true; key[pos] = k; value[pos] = v; if (size++ >= maxFill) rehash(arraySize(size + 1, f)); if (ASSERTS) checkTable(); } @Override public int put(final int k, final int v) { final int pos = find(k); if (pos < 0) { insert(-pos - 1, k, v); return defRetValue; } final int oldValue = value[pos]; value[pos] = v; return oldValue; } private int addToValue(final int pos, final int incr) { final int oldValue = value[pos]; value[pos] = oldValue + incr; return oldValue; } /** Adds an increment to value currently associated with a key. * *

Note that this method respects the {@linkplain #defaultReturnValue() default return value} semantics: when * called with a key that does not currently appears in the map, the key * will be associated with the default return value plus * the given increment. * * @param k the key. * @param incr the increment. * @return the old value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key. */ public int addTo(final int k, final int incr) { int pos; if (( (k) == (0) )) { if (containsNullKey) return addToValue(n, incr); pos = n; containsNullKey = true; } else { int curr; final int[] key = this.key; // The starting point. if (! ( (curr = key[pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (k) ) ) & mask]) == (0) )) { if (( (curr) == (k) )) return addToValue(pos, incr); while(! ( (curr = key[pos = (pos + 1) & mask]) == (0) )) if (( (curr) == (k) )) return addToValue(pos, incr); } } key[pos] = k; value[pos] = defRetValue + incr; if (size++ >= maxFill) rehash(arraySize(size + 1, f)); if (ASSERTS) checkTable(); return defRetValue; } /** Shifts left entries with the specified hash code, starting at the specified position, * and empties the resulting free entry. * * @param pos a starting position. */ protected final void shiftKeys(int pos) { // Shift entries with the same hash. int last, slot; int curr; final int[] key = this.key; for(;;) { pos = ((last = pos) + 1) & mask; for(;;) { if (( (curr = key[pos]) == (0) )) { key[last] = (0); return; } slot = ( it.unimi.dsi.fastutil.HashCommon.mix( (curr) ) ) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } key[last] = curr; value[last] = value[pos]; } } @Override public int remove(final int k) { if (( (k) == (0) )) { if (containsNullKey) return removeNullEntry(); return defRetValue; } int curr; final int[] key = this.key; int pos; // The starting point. if (( (curr = key[pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (k) ) ) & mask]) == (0) )) return defRetValue; if (( (k) == (curr) )) return removeEntry(pos); while(true) { if (( (curr = key[pos = (pos + 1) & mask]) == (0) )) return defRetValue; if (( (k) == (curr) )) return removeEntry(pos); } } @Override public int get(final int k) { if (( (k) == (0) )) return containsNullKey ? value[n] : defRetValue; int curr; final int[] key = this.key; int pos; // The starting point. if (( (curr = key[pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (k) ) ) & mask]) == (0) )) return defRetValue; if (( (k) == (curr) )) return value[pos]; // There's always an unused entry. while(true) { if (( (curr = key[pos = (pos + 1) & mask]) == (0) )) return defRetValue; if (( (k) == (curr) )) return value[pos]; } } @Override public boolean containsKey(final int k) { if (( (k) == (0) )) return containsNullKey; int curr; final int[] key = this.key; int pos; // The starting point. if (( (curr = key[pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (k) ) ) & mask]) == (0) )) return false; if (( (k) == (curr) )) return true; // There's always an unused entry. while(true) { if (( (curr = key[pos = (pos + 1) & mask]) == (0) )) return false; if (( (k) == (curr) )) return true; } } @Override public boolean containsValue(final int v) { final int value[] = this.value; final int key[] = this.key; if (containsNullKey && ( (value[n]) == (v) )) return true; for(int i = n; i-- != 0;) if (! ( (key[i]) == (0) ) && ( (value[i]) == (v) )) return true; return false; } /** {@inheritDoc} */ @Override public int getOrDefault(final int k, final int defaultValue) { if (( (k) == (0) )) return containsNullKey ? value[n] : defaultValue; int curr; final int[] key = this.key; int pos; // The starting point. if (( (curr = key[pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (k) ) ) & mask]) == (0) )) return defaultValue; if (( (k) == (curr) )) return value[pos]; // There's always an unused entry. while(true) { if (( (curr = key[pos = (pos + 1) & mask]) == (0) )) return defaultValue; if (( (k) == (curr) )) return value[pos]; } } /** {@inheritDoc} */ @Override public int putIfAbsent(final int k, final int v) { final int pos = find(k); if (pos >= 0) return value[pos]; insert(-pos - 1, k, v); return defRetValue; } /** {@inheritDoc} */ @Override public boolean remove(final int k, final int v) { if (( (k) == (0) )) { if (containsNullKey && ( (v) == (value[n]) )) { removeNullEntry(); return true; } return false; } int curr; final int[] key = this.key; int pos; // The starting point. if (( (curr = key[pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (k) ) ) & mask]) == (0) )) return false; if (( (k) == (curr) ) && ( (v) == (value[pos]) )) { removeEntry(pos); return true; } while(true) { if (( (curr = key[pos = (pos + 1) & mask]) == (0) )) return false; if (( (k) == (curr) ) && ( (v) == (value[pos]) )) { removeEntry(pos); return true; } } } /** {@inheritDoc} */ @Override public boolean replace(final int k, final int oldValue, final int v) { final int pos = find(k); if (pos < 0 || ! ( (oldValue) == (value[pos]) )) return false; value[pos] = v; return true; } /** {@inheritDoc} */ @Override public int replace(final int k, final int v) { final int pos = find(k); if (pos < 0) return defRetValue; final int oldValue = value[pos]; value[pos] = v; return oldValue; } /** {@inheritDoc} */ @Override public int computeIfAbsent(final int k, final java.util.function.IntUnaryOperator mappingFunction) { java.util.Objects.requireNonNull(mappingFunction); final int pos = find(k); if (pos >= 0) return value[pos]; final int newValue = mappingFunction.applyAsInt(k); insert(-pos -1, k, newValue); return newValue; } /** {@inheritDoc} */ @Override public int computeIfAbsent(final int key, final Int2IntFunction mappingFunction) { java.util.Objects.requireNonNull(mappingFunction); final int pos = find(key); if (pos >= 0) return value[pos]; if (!mappingFunction.containsKey(key)) return defRetValue; final int newValue = mappingFunction.get(key); insert(-pos -1, key, newValue); return newValue; } /** {@inheritDoc} */ @Override public int computeIfAbsentNullable(final int k, final java.util.function.IntFunction mappingFunction) { java.util.Objects.requireNonNull(mappingFunction); final int pos = find(k); if (pos >= 0) return value[pos]; final Integer newValue = mappingFunction.apply(k); if (newValue == null) return defRetValue; final int v = (newValue).intValue(); insert(-pos - 1, k, v); return v; } /** {@inheritDoc} */ @Override public int computeIfPresent(final int k, final java.util.function.BiFunction remappingFunction) { java.util.Objects.requireNonNull(remappingFunction); final int pos = find(k); if (pos < 0) return defRetValue; final Integer newValue = remappingFunction.apply(Integer.valueOf(k), Integer.valueOf(value[pos])); if (newValue == null) { if (( (k) == (0) )) removeNullEntry(); else removeEntry(pos); return defRetValue; } return value[pos] = (newValue).intValue(); } /** {@inheritDoc} */ @Override public int compute(final int k, final java.util.function.BiFunction remappingFunction) { java.util.Objects.requireNonNull(remappingFunction); final int pos = find(k); final Integer newValue = remappingFunction.apply(Integer.valueOf(k), pos >= 0 ? Integer.valueOf(value[pos]) : null); if (newValue == null) { if (pos >= 0) { if (( (k) == (0) )) removeNullEntry(); else removeEntry(pos); } return defRetValue; } int newVal = (newValue).intValue(); if (pos < 0) { insert(-pos - 1, k, newVal); return newVal; } return value[pos] = newVal; } /** {@inheritDoc} */ @Override public int merge(final int k, final int v, final java.util.function.BiFunction remappingFunction) { java.util.Objects.requireNonNull(remappingFunction); final int pos = find(k); if (pos < 0) { if (pos < 0) insert(-pos - 1, k, v); else value[pos] = v; return v; } final Integer newValue = remappingFunction.apply(Integer.valueOf(value[pos]), Integer.valueOf(v)); if (newValue == null) { if (( (k) == (0) )) removeNullEntry(); else removeEntry(pos); return defRetValue; } return value[pos] = (newValue).intValue(); } /* Removes all elements from this map. * *

To increase object reuse, this method does not change the table size. * If you want to reduce the table size, you must use {@link #trim()}. * */ @Override public void clear() { if (size == 0) return; size = 0; containsNullKey = false; Arrays.fill(key, (0)); } @Override public int size() { return size; } @Override public boolean isEmpty() { return size == 0; } /** The entry class for a hash map does not record key and value, but * rather the position in the hash table of the corresponding entry. This * is necessary so that calls to {@link java.util.Map.Entry#setValue(Object)} are reflected in * the map */ final class MapEntry implements Int2IntMap.Entry , Map.Entry, IntIntPair { // The table index this entry refers to, or -1 if this entry has been deleted. int index; MapEntry(final int index) { this.index = index; } MapEntry() {} @Override public int getIntKey() { return key[index]; } @Override public int leftInt() { return key[index]; } @Override public int getIntValue() { return value[index]; } @Override public int rightInt() { return value[index]; } @Override public int setValue(final int v) { final int oldValue = value[index]; value[index] = v; return oldValue; } @Override public IntIntPair right(final int v) { value[index] = v; return this; } /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override public Integer getKey() { return Integer.valueOf(key[index]); } /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override public Integer getValue() { return Integer.valueOf(value[index]); } /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override public Integer setValue(final Integer v) { return Integer.valueOf(setValue((v).intValue())); } @SuppressWarnings("unchecked") @Override public boolean equals(final Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; return ( (key[index]) == ((e.getKey()).intValue()) ) && ( (value[index]) == ((e.getValue()).intValue()) ); } @Override public int hashCode() { return (key[index]) ^ (value[index]); } @Override public String toString() { return key[index] + "=>" + value[index]; } } /** An iterator over a hash map. */ private abstract class MapIterator { /** The index of the last entry returned, if positive or zero; initially, {@link #n}. If negative, the last entry returned was that of the key of index {@code - pos - 1} from the {@link #wrapped} list. */ int pos = n; /** The index of the last entry that has been returned (more precisely, the value of {@link #pos} if {@link #pos} is positive, or {@link Integer#MIN_VALUE} if {@link #pos} is negative). It is -1 if either we did not return an entry yet, or the last returned entry has been removed. */ int last = -1; /** A downward counter measuring how many entries must still be returned. */ int c = size; /** A boolean telling us whether we should return the entry with the null key. */ boolean mustReturnNullKey = Int2IntOpenHashMap.this.containsNullKey; /** A lazily allocated list containing keys of entries that have wrapped around the table because of removals. */ IntArrayList wrapped; @SuppressWarnings("unused") abstract void acceptOnIndex(final ConsumerType action, final int index); public boolean hasNext() { return c != 0; } public int nextEntry() { if (! hasNext()) throw new NoSuchElementException(); c--; if (mustReturnNullKey) { mustReturnNullKey = false; return last = n; } final int key[] = Int2IntOpenHashMap.this.key; for(;;) { if (--pos < 0) { // We are just enumerating elements from the wrapped list. last = Integer.MIN_VALUE; final int k = wrapped.getInt(- pos - 1); int p = ( it.unimi.dsi.fastutil.HashCommon.mix( (k) ) ) & mask; while (! ( (k) == (key[p]) )) p = (p + 1) & mask; return p; } if (! ( (key[pos]) == (0) )) return last = pos; } } public void forEachRemaining(final ConsumerType action) { if (mustReturnNullKey) { mustReturnNullKey = false; acceptOnIndex(action, last = n); c--; } final int key[] = Int2IntOpenHashMap.this.key; while (c != 0) { if (--pos < 0) { // We are just enumerating elements from the wrapped list. last = Integer.MIN_VALUE; final int k = wrapped.getInt(- pos - 1); int p = ( it.unimi.dsi.fastutil.HashCommon.mix( (k) ) ) & mask; while (! ( (k) == (key[p]) )) p = (p + 1) & mask; acceptOnIndex(action, p); c--; } else if (! ( (key[pos]) == (0) )) { acceptOnIndex(action, last = pos); c--; } } } /** Shifts left entries with the specified hash code, starting at the specified position, * and empties the resulting free entry. * * @param pos a starting position. */ private void shiftKeys(int pos) { // Shift entries with the same hash. int last, slot; int curr; final int[] key = Int2IntOpenHashMap.this.key; for(;;) { pos = ((last = pos) + 1) & mask; for(;;) { if (( (curr = key[pos]) == (0) )) { key[last] = (0); return; } slot = ( it.unimi.dsi.fastutil.HashCommon.mix( (curr) ) ) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } if (pos < last) { // Wrapped entry. if (wrapped == null) wrapped = new IntArrayList (2); wrapped.add(key[pos]); } key[last] = curr; value[last] = value[pos]; } } public void remove() { if (last == -1) throw new IllegalStateException(); if (last == n) { containsNullKey = false; } else if (pos >= 0) shiftKeys(last); else { // We're removing wrapped entries. Int2IntOpenHashMap.this.remove(wrapped.getInt(- pos - 1)); last = -1; // Note that we must not decrement size return; } size--; last = -1; // You can no longer remove this entry. if (ASSERTS) checkTable(); } public int skip(final int n) { int i = n; while(i-- != 0 && hasNext()) nextEntry(); return n - i - 1; } } private final class EntryIterator extends MapIterator> implements ObjectIterator { private MapEntry entry; @Override public MapEntry next() { return entry = new MapEntry(nextEntry()); } // forEachRemaining inherited from MapIterator superclass. @Override final void acceptOnIndex(final Consumer action, final int index) { action.accept(entry = new MapEntry(index)); } @Override public void remove() { super.remove(); entry.index = -1; // You cannot use a deleted entry. } } private final class FastEntryIterator extends MapIterator> implements ObjectIterator { private final MapEntry entry = new MapEntry(); @Override public MapEntry next() { entry.index = nextEntry(); return entry; } // forEachRemaining inherited from MapIterator superclass. @Override final void acceptOnIndex(final Consumer action, final int index) { entry.index = index; action.accept(entry); } } private abstract class MapSpliterator> { /** The index (which bucket) of the next item to give to the action. * Unlike {@link SetIterator}, this counts up instead of down. */ int pos = 0; /** The maximum bucket (exclusive) to iterate to */ int max = n; /** An upwards counter counting how many we have given */ int c = 0; /** A boolean telling us whether we should return the null key. */ boolean mustReturnNull = Int2IntOpenHashMap.this.containsNullKey; boolean hasSplit = false; MapSpliterator() {} MapSpliterator(int pos, int max, boolean mustReturnNull, boolean hasSplit) { this.pos = pos; this.max = max; this.mustReturnNull = mustReturnNull; this.hasSplit = hasSplit; } abstract void acceptOnIndex(final ConsumerType action, final int index); abstract SplitType makeForSplit(int pos, int max, boolean mustReturnNull); public boolean tryAdvance(final ConsumerType action) { if (mustReturnNull) { mustReturnNull = false; ++c; acceptOnIndex(action, n); return true; } final int key[] = Int2IntOpenHashMap.this.key; while (pos < max) { if (! ( (key[pos]) == (0) )) { ++c; acceptOnIndex(action, pos++); return true; } ++pos; } return false; } public void forEachRemaining(final ConsumerType action) { if (mustReturnNull) { mustReturnNull = false; ++c; acceptOnIndex(action, n); } final int key[] = Int2IntOpenHashMap.this.key; while (pos < max) { if (! ( (key[pos]) == (0) )) { acceptOnIndex(action, pos); ++c; } ++pos; } } public long estimateSize() { if (!hasSplit) { // Root spliterator; we know how many are remaining. return size - c; } else { // After we split, we can no longer know exactly how many we have (or at least not efficiently). // (size / n) * (max - pos) aka currentTableDensity * numberOfBucketsLeft seems like a good estimate. return Math.min(size - c, (long)(((double)realSize() / n) * (max - pos)) + (mustReturnNull ? 1 : 0)); } } public SplitType trySplit() { if (pos >= max - 1) return null; int retLen = (max - pos) >> 1; if (retLen <= 1) return null; int myNewPos = pos + retLen; int retPos = pos; int retMax = myNewPos; // Since null is returned first, and the convention is that the returned split is the prefix of elements, // the split will take care of returning null (if needed), and we won't return it anymore. SplitType split = makeForSplit(retPos, retMax, mustReturnNull); this.pos = myNewPos; this.mustReturnNull = false; this.hasSplit = true; return split; } public long skip(long n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); if (n == 0) return 0; long skipped = 0; if (mustReturnNull) { mustReturnNull = false; ++skipped; --n; } final int key[] = Int2IntOpenHashMap.this.key; while (pos < max && n > 0) { if (! ( (key[pos++]) == (0) )) { ++skipped; --n; } } return skipped; } } private final class EntrySpliterator extends MapSpliterator, EntrySpliterator> implements ObjectSpliterator { private static final int POST_SPLIT_CHARACTERISTICS = ObjectSpliterators.SET_SPLITERATOR_CHARACTERISTICS & ~java.util.Spliterator.SIZED; EntrySpliterator() {} EntrySpliterator(int pos, int max, boolean mustReturnNull, boolean hasSplit) { super(pos, max, mustReturnNull, hasSplit); } @Override public int characteristics() { return hasSplit ? POST_SPLIT_CHARACTERISTICS : ObjectSpliterators.SET_SPLITERATOR_CHARACTERISTICS; } @Override final void acceptOnIndex(final Consumer action, final int index) { action.accept(new MapEntry(index)); } @Override final EntrySpliterator makeForSplit(int pos, int max, boolean mustReturnNull) { return new EntrySpliterator(pos, max, mustReturnNull, true); } } private final class MapEntrySet extends AbstractObjectSet implements FastEntrySet { @Override public ObjectIterator iterator() { return new EntryIterator(); } @Override public ObjectIterator fastIterator() { return new FastEntryIterator(); } @Override public ObjectSpliterator spliterator() { return new EntrySpliterator(); } // @Override public boolean contains(final Object o) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry)o; if (e.getKey() == null || ! (e.getKey() instanceof Integer)) return false; if (e.getValue() == null || ! (e.getValue() instanceof Integer)) return false; final int k = ((Integer)(e.getKey())).intValue(); final int v = ((Integer)(e.getValue())).intValue(); if (( (k) == (0) )) return Int2IntOpenHashMap.this.containsNullKey && ( (value[n]) == (v) ); int curr; final int[] key = Int2IntOpenHashMap.this.key; int pos; // The starting point. if (( (curr = key[pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (k) ) ) & mask]) == (0) )) return false; if (( (k) == (curr) )) return ( (value[pos]) == (v) ); // There's always an unused entry. while(true) { if (( (curr = key[pos = (pos + 1) & mask]) == (0) )) return false; if (( (k) == (curr) )) return ( (value[pos]) == (v) ); } } @Override public boolean remove(final Object o) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry)o; if (e.getKey() == null || ! (e.getKey() instanceof Integer)) return false; if (e.getValue() == null || ! (e.getValue() instanceof Integer)) return false; final int k = ((Integer)(e.getKey())).intValue(); final int v = ((Integer)(e.getValue())).intValue(); if (( (k) == (0) )) { if (containsNullKey && ( (value[n]) == (v) )) { removeNullEntry(); return true; } return false; } int curr; final int[] key = Int2IntOpenHashMap.this.key; int pos; // The starting point. if (( (curr = key[pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (k) ) ) & mask]) == (0) )) return false; if (( (curr) == (k) )) { if (( (value[pos]) == (v) )) { removeEntry(pos); return true; } return false; } while(true) { if (( (curr = key[pos = (pos + 1) & mask]) == (0) )) return false; if (( (curr) == (k) )) { if (( (value[pos]) == (v) )) { removeEntry(pos); return true; } } } } @Override public int size() { return size; } @Override public void clear() { Int2IntOpenHashMap.this.clear(); } /** {@inheritDoc} */ @Override public void forEach(final Consumer consumer) { if (containsNullKey) consumer.accept(new AbstractInt2IntMap.BasicEntry (key[n], value[n])); for(int pos = n; pos-- != 0;) if (! ( (key[pos]) == (0) )) consumer.accept(new AbstractInt2IntMap.BasicEntry (key[pos], value[pos])); } /** {@inheritDoc} */ @Override public void fastForEach(final Consumer consumer) { final AbstractInt2IntMap.BasicEntry entry = new AbstractInt2IntMap.BasicEntry (); if (containsNullKey) { entry.key = key[n]; entry.value = value[n]; consumer.accept(entry); } for(int pos = n; pos-- != 0;) if (! ( (key[pos]) == (0) )) { entry.key = key[pos]; entry.value = value[pos]; consumer.accept(entry); } } } @Override public FastEntrySet int2IntEntrySet() { if (entries == null) entries = new MapEntrySet(); return entries; } /** An iterator on keys. * *

We simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods * (and possibly their type-specific counterparts) so that they return keys * instead of entries. */ private final class KeyIterator extends MapIterator implements IntIterator { public KeyIterator() { super(); } // forEachRemaining inherited from MapIterator superclass. // Despite the superclass declared with generics, the way Java inherits and generates bridge methods avoids the boxing/unboxing @Override final void acceptOnIndex(final java.util.function.IntConsumer action, final int index) { action.accept(key[index]); } @Override public int nextInt() { return key[nextEntry()]; } } private final class KeySpliterator extends MapSpliterator implements IntSpliterator { private static final int POST_SPLIT_CHARACTERISTICS = IntSpliterators.SET_SPLITERATOR_CHARACTERISTICS & ~java.util.Spliterator.SIZED; KeySpliterator() {} KeySpliterator(int pos, int max, boolean mustReturnNull, boolean hasSplit) { super(pos, max, mustReturnNull, hasSplit); } @Override public int characteristics() { return hasSplit ? POST_SPLIT_CHARACTERISTICS : IntSpliterators.SET_SPLITERATOR_CHARACTERISTICS; } @Override final void acceptOnIndex(final java.util.function.IntConsumer action, final int index) { action.accept(key[index]); } @Override final KeySpliterator makeForSplit(int pos, int max, boolean mustReturnNull) { return new KeySpliterator(pos, max, mustReturnNull, true); } } private final class KeySet extends AbstractIntSet { @Override public IntIterator iterator() { return new KeyIterator(); } @Override public IntSpliterator spliterator() { return new KeySpliterator(); } /** {@inheritDoc} */ @Override public void forEach(final java.util.function.IntConsumer consumer) { if (containsNullKey) consumer.accept(key[n]); for(int pos = n; pos-- != 0;) { final int k = key[pos]; if (! ( (k) == (0) )) consumer.accept(k); } } @Override public int size() { return size; } @Override public boolean contains(int k) { return containsKey(k); } @Override public boolean remove(int k) { final int oldSize = size; Int2IntOpenHashMap.this.remove(k); return size != oldSize; } @Override public void clear() { Int2IntOpenHashMap.this.clear();} } @Override public IntSet keySet() { if (keys == null) keys = new KeySet(); return keys; } /** An iterator on values. * *

We simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods * (and possibly their type-specific counterparts) so that they return values * instead of entries. */ private final class ValueIterator extends MapIterator implements IntIterator { public ValueIterator() { super(); } // forEachRemaining inherited from MapIterator superclass. // Despite the superclass declared with generics, the way Java inherits and generates bridge methods avoids the boxing/unboxing @Override final void acceptOnIndex(final java.util.function.IntConsumer action, final int index) { action.accept(value[index]); } @Override public int nextInt() { return value[nextEntry()]; } } private final class ValueSpliterator extends MapSpliterator implements IntSpliterator { private static final int POST_SPLIT_CHARACTERISTICS = IntSpliterators.COLLECTION_SPLITERATOR_CHARACTERISTICS & ~java.util.Spliterator.SIZED; ValueSpliterator() {} ValueSpliterator(int pos, int max, boolean mustReturnNull, boolean hasSplit) { super(pos, max, mustReturnNull, hasSplit); } @Override public int characteristics() { return hasSplit ? POST_SPLIT_CHARACTERISTICS : IntSpliterators.COLLECTION_SPLITERATOR_CHARACTERISTICS; } @Override final void acceptOnIndex(final java.util.function.IntConsumer action, final int index) { action.accept(value[index]); } @Override final ValueSpliterator makeForSplit(int pos, int max, boolean mustReturnNull) { return new ValueSpliterator(pos, max, mustReturnNull, true); } } @Override public IntCollection values() { if (values == null) values = new AbstractIntCollection () { @Override public IntIterator iterator() { return new ValueIterator(); } @Override public IntSpliterator spliterator() { return new ValueSpliterator(); } /** {@inheritDoc} */ @Override public void forEach(final java.util.function.IntConsumer consumer) { if (containsNullKey) consumer.accept(value[n]); for(int pos = n; pos-- != 0;) if (! ( (key[pos]) == (0) )) consumer.accept(value[pos]); } @Override public int size() { return size; } @Override public boolean contains(int v) { return containsValue(v); } @Override public void clear() { Int2IntOpenHashMap.this.clear(); } }; return values; } /** Rehashes the map, making the table as small as possible. * *

This method rehashes the table to the smallest size satisfying the * load factor. It can be used when the set will not be changed anymore, so * to optimize access speed and size. * *

If the table size is already the minimum possible, this method * does nothing. * * @return true if there was enough memory to trim the map. * @see #trim(int) */ public boolean trim() { return trim(size); } /** Rehashes this map if the table is too large. * *

Let N be the smallest table size that can hold * max(n,{@link #size()}) entries, still satisfying the load factor. If the current * table size is smaller than or equal to N, this method does * nothing. Otherwise, it rehashes this map in a table of size * N. * *

This method is useful when reusing maps. {@linkplain #clear() Clearing a * map} leaves the table size untouched. If you are reusing a map * many times, you can call this method with a typical * size to avoid keeping around a very large table just * because of a few large transient maps. * * @param n the threshold for the trimming. * @return true if there was enough memory to trim the map. * @see #trim() */ public boolean trim(final int n) { final int l = HashCommon.nextPowerOfTwo((int)Math.ceil(n / f)); if (l >= this.n || size > maxFill(l, f)) return true; try { rehash(l); } catch(OutOfMemoryError cantDoIt) { return false; } return true; } /** Rehashes the map. * *

This method implements the basic rehashing strategy, and may be * overridden by subclasses implementing different rehashing strategies (e.g., * disk-based rehashing). However, you should not override this method * unless you understand the internal workings of this class. * * @param newN the new size */ protected void rehash(final int newN) { final int key[] = this.key; final int value[] = this.value; final int mask = newN - 1; // Note that this is used by the hashing macro final int newKey[] = new int[newN + 1]; final int newValue[] = new int[newN + 1]; int i = n, pos; for(int j = realSize(); j-- != 0;) { while(( (key[--i]) == (0) )); if (! ( (newKey[pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (key[i]) ) ) & mask]) == (0) )) while (! ( (newKey[pos = (pos + 1) & mask]) == (0) )); newKey[pos] = key[i]; newValue[pos] = value[i]; } newValue[newN] = value[n]; n = newN; this.mask = mask; maxFill = maxFill(n, f); this.key = newKey; this.value = newValue; } /** Returns a deep copy of this map. * *

This method performs a deep copy of this hash map; the data stored in the * map, however, is not cloned. Note that this makes a difference only for object keys. * * @return a deep copy of this map. */ @Override public Int2IntOpenHashMap clone() { Int2IntOpenHashMap c; try { c = (Int2IntOpenHashMap )super.clone(); } catch(CloneNotSupportedException cantHappen) { throw new InternalError(); } c.keys = null; c.values = null; c.entries = null; c.containsNullKey = containsNullKey; c.key = key.clone(); c.value = value.clone(); return c; } /** Returns a hash code for this map. * * This method overrides the generic method provided by the superclass. * Since {@code equals()} is not overriden, it is important * that the value returned by this method is the same value as * the one returned by the overriden method. * * @return a hash code for this map. */ @Override public int hashCode() { int h = 0; for(int j = realSize(), i = 0, t = 0; j-- != 0;) { while(( (key[i]) == (0) )) i++; t = (key[i]); t ^= (value[i]); h += t; i++; } // Zero / null keys have hash zero. if (containsNullKey) h += (value[n]); return h; } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { final int key[] = this.key; final int value[] = this.value; final EntryIterator i = new EntryIterator(); s.defaultWriteObject(); for(int j = size, e; j-- != 0;) { e = i.nextEntry(); s.writeInt(key[e]); s.writeInt(value[e]); } } private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); n = arraySize(size, f); maxFill = maxFill(n, f); mask = n - 1; final int key[] = this.key = new int[n + 1]; final int value[] = this.value = new int[n + 1]; int k; int v; for(int i = size, pos; i-- != 0;) { k = s.readInt(); v = s.readInt(); if (( (k) == (0) )) { pos = n; containsNullKey = true; } else { pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (k) ) ) & mask; while (! ( (key[pos]) == (0) )) pos = (pos + 1) & mask; } key[pos] = k; value[pos] = v; } if (ASSERTS) checkTable(); } private void checkTable() {} }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy