All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.fastutil.ints.IntOpenHashSet Maven / Gradle / Ivy

Go to download

fastutil extends the Java Collections Framework by providing type-specific maps, sets, lists, and queues with a small memory footprint and fast operations; it provides also big (64-bit) arrays, sets, and lists, sorting algorithms, fast, practical I/O classes for binary and text files, and facilities for memory mapping large files. This jar (fastutil-core.jar) contains data structures based on integers, longs, doubles, and objects, only; fastutil.jar contains all classes. If you have both jars in your dependencies, this jar should be excluded.

The newest version!
/*
	* Copyright (C) 2002-2022 Sebastiano Vigna
	*
	* Licensed under the Apache License, Version 2.0 (the "License");
	* you may not use this file except in compliance with the License.
	* You may obtain a copy of the License at
	*
	*     http://www.apache.org/licenses/LICENSE-2.0
	*
	* Unless required by applicable law or agreed to in writing, software
	* distributed under the License is distributed on an "AS IS" BASIS,
	* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
	* See the License for the specific language governing permissions and
	* limitations under the License.
	*/
package it.unimi.dsi.fastutil.ints;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Arrays;
import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;
/**  A type-specific hash set with with a fast, small-footprint implementation.
	*
	* 

Instances of this class use a hash table to represent a set. The table is * filled up to a specified load factor, and then doubled in size to * accommodate new entries. If the table is emptied below one fourth * of the load factor, it is halved in size; however, the table is never reduced to a * size smaller than that at creation time: this approach makes it * possible to create sets with a large capacity in which insertions and * deletions do not cause immediately rehashing. Moreover, halving is * not performed when deleting entries from an iterator, as it would interfere * with the iteration process. * *

Note that {@link #clear()} does not modify the hash table size. * Rather, a family of {@linkplain #trim() trimming * methods} lets you control the size of the table; this is particularly useful * if you reuse instances of this class. * * @see Hash * @see HashCommon */ public class IntOpenHashSet extends AbstractIntSet implements java.io.Serializable, Cloneable, Hash { private static final long serialVersionUID = 0L; private static final boolean ASSERTS = false; /** The array of keys. */ protected transient int[] key; /** The mask for wrapping a position counter. */ protected transient int mask; /** Whether this set contains the null key. */ protected transient boolean containsNull; /** The current table size. Note that an additional element is allocated for storing the null key. */ protected transient int n; /** Threshold after which we rehash. It must be the table size times {@link #f}. */ protected transient int maxFill; /** We never resize below this threshold, which is the construction-time {#n}. */ protected final transient int minN; /** Number of entries in the set (including the null key, if present). */ protected int size; /** The acceptable load factor. */ protected final float f; /** Creates a new hash set. * *

The actual table size will be the least power of two greater than {@code expected}/{@code f}. * * @param expected the expected number of elements in the hash set. * @param f the load factor. */ public IntOpenHashSet(final int expected, final float f) { if (f <= 0 || f >= 1) throw new IllegalArgumentException("Load factor must be greater than 0 and smaller than 1"); if (expected < 0) throw new IllegalArgumentException("The expected number of elements must be nonnegative"); this.f = f; minN = n = arraySize(expected, f); mask = n - 1; maxFill = maxFill(n, f); key = new int[n + 1]; } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * * @param expected the expected number of elements in the hash set. */ public IntOpenHashSet(final int expected) { this(expected, DEFAULT_LOAD_FACTOR); } /** Creates a new hash set with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} elements * and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. */ public IntOpenHashSet() { this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR); } /** Creates a new hash set copying a given collection. * * @param c a {@link Collection} to be copied into the new hash set. * @param f the load factor. */ public IntOpenHashSet(final Collection c, final float f) { this(c.size(), f); addAll(c); } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying a given collection. * * @param c a {@link Collection} to be copied into the new hash set. */ public IntOpenHashSet(final Collection c) { this(c, DEFAULT_LOAD_FACTOR); } /** Creates a new hash set copying a given type-specific collection. * * @param c a type-specific collection to be copied into the new hash set. * @param f the load factor. */ public IntOpenHashSet(final IntCollection c, final float f) { this(c.size(), f); addAll(c); } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying a given type-specific collection. * * @param c a type-specific collection to be copied into the new hash set. */ public IntOpenHashSet(final IntCollection c) { this(c, DEFAULT_LOAD_FACTOR); } /** Creates a new hash set using elements provided by a type-specific iterator. * * @param i a type-specific iterator whose elements will fill the set. * @param f the load factor. */ public IntOpenHashSet(final IntIterator i, final float f) { this(DEFAULT_INITIAL_SIZE, f); while(i.hasNext()) add(i.nextInt()); } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by a type-specific iterator. * * @param i a type-specific iterator whose elements will fill the set. */ public IntOpenHashSet(final IntIterator i) { this(i, DEFAULT_LOAD_FACTOR); } /** Creates a new hash set using elements provided by an iterator. * * @param i an iterator whose elements will fill the set. * @param f the load factor. */ public IntOpenHashSet(final Iterator i, final float f) { this(IntIterators.asIntIterator(i), f); } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by an iterator. * * @param i an iterator whose elements will fill the set. */ public IntOpenHashSet(final Iterator i) { this(IntIterators.asIntIterator(i)); } /** Creates a new hash set and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the set. * @param offset the first element to use. * @param length the number of elements to use. * @param f the load factor. */ public IntOpenHashSet(final int[] a, final int offset, final int length, final float f) { this(length < 0 ? 0 : length, f); IntArrays.ensureOffsetLength(a, offset, length); for(int i = 0; i < length; i++) add(a[offset + i]); } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the set. * @param offset the first element to use. * @param length the number of elements to use. */ public IntOpenHashSet(final int[] a, final int offset, final int length) { this(a, offset, length, DEFAULT_LOAD_FACTOR); } /** Creates a new hash set copying the elements of an array. * * @param a an array to be copied into the new hash set. * @param f the load factor. */ public IntOpenHashSet(final int[] a, final float f) { this(a, 0, a.length, f); } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying the elements of an array. * * @param a an array to be copied into the new hash set. */ public IntOpenHashSet(final int[] a) { this(a, DEFAULT_LOAD_FACTOR); } /** Creates a new empty hash set. * * @return a new empty hash set. */ public static IntOpenHashSet of() { return new IntOpenHashSet (); } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * using the given element. * * @param e the element that the returned set will contain. * @return a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor containing {@code e}. */ public static IntOpenHashSet of(final int e) { IntOpenHashSet result = new IntOpenHashSet (1, DEFAULT_LOAD_FACTOR); result.add(e); return result; } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * using the elements given. * * @param e0 the first element. * @param e1 the second element. * @return a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor containing {@code e0} and {@code e1}. * @throws IllegalArgumentException if there were duplicate entries. */ public static IntOpenHashSet of(final int e0, final int e1) { IntOpenHashSet result = new IntOpenHashSet (2, DEFAULT_LOAD_FACTOR); result.add(e0); if (!result.add(e1)) { throw new IllegalArgumentException("Duplicate element: " + e1); } return result; } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * using the elements given. * * @param e0 the first element. * @param e1 the second element. * @param e2 the third element. * @return a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor containing {@code e0}, {@code e1}, and {@code e2}. * @throws IllegalArgumentException if there were duplicate entries. */ public static IntOpenHashSet of(final int e0, final int e1, final int e2) { IntOpenHashSet result = new IntOpenHashSet (3, DEFAULT_LOAD_FACTOR); result.add(e0); if (!result.add(e1)) { throw new IllegalArgumentException("Duplicate element: " + e1); } if (!result.add(e2)) { throw new IllegalArgumentException("Duplicate element: " + e2); } return result; } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * using a list of elements. * * @param a a list of elements that will be used to initialize the new hash set. * @return a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor containing the elements of {@code a}. * @throws IllegalArgumentException if a duplicate entry was encountered. */ public static IntOpenHashSet of(final int... a) { IntOpenHashSet result = new IntOpenHashSet (a.length, DEFAULT_LOAD_FACTOR); for (int element : a) { if (!result.add(element)) { throw new IllegalArgumentException("Duplicate element " + element); } } return result; } /** Collects the result of a primitive {@code Stream} into a new hash set. * *

This method performs a terminal operation on the given {@code Stream} * * @apiNote Taking a primitive stream instead of returning something like a * {@link java.util.stream.Collector Collector} is necessary because there is no * primitive {@code Collector} equivalent in the Java API. */ public static IntOpenHashSet toSet(java.util.stream.IntStream stream) { return stream.collect( IntOpenHashSet::new, IntOpenHashSet::add, IntOpenHashSet::addAll); } /** Collects the result of a primitive {@code Stream} into a new hash set, potentially pre-allocated to handle the given size. * *

This method performs a terminal operation on the given {@code Stream} * * @apiNote Taking a primitive stream instead returning something like a * {@link java.util.stream.Collector Collector} is necessary because there is no * primitive {@code Collector} equivalent in the Java API. */ public static IntOpenHashSet toSetWithExpectedSize(java.util.stream.IntStream stream, int expectedSize) { if (expectedSize <= Hash.DEFAULT_INITIAL_SIZE) { // Already below default capacity. Just use all default construction instead of fiddling with atomics in SizeDecreasingSupplier return toSet(stream); } return stream.collect( new IntCollections.SizeDecreasingSupplier< IntOpenHashSet >( expectedSize, (int size) -> size <= Hash.DEFAULT_INITIAL_SIZE ? new IntOpenHashSet () : new IntOpenHashSet (size)), IntOpenHashSet::add, IntOpenHashSet::addAll); } private int realSize() { return containsNull ? size - 1 : size; } /** Ensures that this set can hold a certain number of elements without rehashing. * * @param capacity a number of elements; there will be no rehashing unless * the set {@linkplain #size() size} exceeds this number. */ public void ensureCapacity(final int capacity) { final int needed = arraySize(capacity, f); if (needed > n) rehash(needed); } private void tryCapacity(final long capacity) { final int needed = (int)Math.min(1 << 30, Math.max(2, HashCommon.nextPowerOfTwo((long)Math.ceil(capacity / f)))); if (needed > n) rehash(needed); } @Override public boolean addAll(IntCollection c) { if (f <= .5) ensureCapacity(c.size()); // The resulting collection will be sized for c.size() elements else tryCapacity(size() + c.size()); // The resulting collection will be tentatively sized for size() + c.size() elements return super.addAll(c); } @Override public boolean addAll(Collection c) { // The resulting collection will be at least c.size() big if (f <= .5) ensureCapacity(c.size()); // The resulting collection will be sized for c.size() elements else tryCapacity(size() + c.size()); // The resulting collection will be tentatively sized for size() + c.size() elements return super.addAll(c); } @Override public boolean add(final int k) { int pos; if (( (k) == (0) )) { if (containsNull) return false; containsNull = true; } else { int curr; final int[] key = this.key; // The starting point. if (! ( (curr = key[pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (k) ) ) & mask]) == (0) )) { if (( (curr) == (k) )) return false; while(! ( (curr = key[pos = (pos + 1) & mask]) == (0) )) if (( (curr) == (k) )) return false; } key[pos] = k; } if (size++ >= maxFill) rehash(arraySize(size + 1, f)); if (ASSERTS) checkTable(); return true; } /** Shifts left entries with the specified hash code, starting at the specified position, * and empties the resulting free entry. * * @param pos a starting position. */ protected final void shiftKeys(int pos) { // Shift entries with the same hash. int last, slot; int curr; final int[] key = this.key; for(;;) { pos = ((last = pos) + 1) & mask; for(;;) { if (( (curr = key[pos]) == (0) )) { key[last] = (0); return; } slot = ( it.unimi.dsi.fastutil.HashCommon.mix( (curr) ) ) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } key[last] = curr; } } private boolean removeEntry(final int pos) { size--; shiftKeys(pos); if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return true; } private boolean removeNullEntry() { containsNull = false; key[n] = (0); size--; if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return true; } @Override public boolean remove(final int k) { if (( (k) == (0) )) { if (containsNull) return removeNullEntry(); return false; } int curr; final int[] key = this.key; int pos; // The starting point. if (( (curr = key[pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (k) ) ) & mask]) == (0) )) return false; if (( (k) == (curr) )) return removeEntry(pos); while(true) { if (( (curr = key[pos = (pos + 1) & mask]) == (0) )) return false; if (( (k) == (curr) )) return removeEntry(pos); } } @Override public boolean contains(final int k) { if (( (k) == (0) )) return containsNull; int curr; final int[] key = this.key; int pos; // The starting point. if (( (curr = key[pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (k) ) ) & mask]) == (0) )) return false; if (( (k) == (curr) )) return true; while(true) { if (( (curr = key[pos = (pos + 1) & mask]) == (0) )) return false; if (( (k) == (curr) )) return true; } } /* Removes all elements from this set. * *

To increase object reuse, this method does not change the table size. * If you want to reduce the table size, you must use {@link #trim()}. * */ @Override public void clear() { if (size == 0) return; size = 0; containsNull = false; Arrays.fill(key, (0)); } @Override public int size() { return size; } @Override public boolean isEmpty() { return size == 0; } /** An iterator over a hash set. */ private final class SetIterator implements IntIterator { /** The index of the last entry returned, if positive or zero; initially, {@link #n}. If negative, the last element returned was that of index {@code - pos - 1} from the {@link #wrapped} list. */ int pos = n; /** The index of the last entry that has been returned (more precisely, the value of {@link #pos} if {@link #pos} is positive, or {@link Integer#MIN_VALUE} if {@link #pos} is negative). It is -1 if either we did not return an entry yet, or the last returned entry has been removed. */ int last = -1; /** A downward counter measuring how many entries must still be returned. */ int c = size; /** A boolean telling us whether we should return the null key. */ boolean mustReturnNull = IntOpenHashSet.this.containsNull; /** A lazily allocated list containing elements that have wrapped around the table because of removals. */ IntArrayList wrapped; @Override public boolean hasNext() { return c != 0; } @Override public int nextInt() { if (! hasNext()) throw new NoSuchElementException(); c--; if (mustReturnNull) { mustReturnNull = false; last = n; return key[n]; } final int key[] = IntOpenHashSet.this.key; for(;;) { if (--pos < 0) { // We are just enumerating elements from the wrapped list. last = Integer.MIN_VALUE; return wrapped.getInt(- pos - 1); } if (! ( (key[pos]) == (0) )) return key[last = pos]; } } /** Shifts left entries with the specified hash code, starting at the specified position, * and empties the resulting free entry. * * @param pos a starting position. */ private final void shiftKeys(int pos) { // Shift entries with the same hash. int last, slot; int curr; final int[] key = IntOpenHashSet.this.key; for(;;) { pos = ((last = pos) + 1) & mask; for(;;) { if (( (curr = key[pos]) == (0) )) { key[last] = (0); return; } slot = ( it.unimi.dsi.fastutil.HashCommon.mix( (curr) ) ) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } if (pos < last) { // Wrapped entry. if (wrapped == null) wrapped = new IntArrayList (2); wrapped.add(key[pos]); } key[last] = curr; } } @Override public void remove() { if (last == -1) throw new IllegalStateException(); if (last == n) { IntOpenHashSet.this.containsNull = false; IntOpenHashSet.this.key[n] = (0); } else if (pos >= 0) shiftKeys(last); else { // We're removing wrapped entries. IntOpenHashSet.this.remove(wrapped.getInt(- pos - 1)); last = -1; // Note that we must not decrement size return; } size--; last = -1; // You can no longer remove this entry. if (ASSERTS) checkTable(); } @Override public void forEachRemaining(final java.util.function.IntConsumer action) { final int key[] = IntOpenHashSet.this.key; if (mustReturnNull) { mustReturnNull = false; last = n; action.accept(key[n]); c--; } while(c != 0) { if (--pos < 0) { // We are just enumerating elements from the wrapped list. last = Integer.MIN_VALUE; action.accept(wrapped.getInt(- pos - 1)); c--; } else if (! ( (key[pos]) == (0) )) { action.accept(key[last = pos]); c--; } } } } @Override public IntIterator iterator() { return new SetIterator(); } private final class SetSpliterator implements IntSpliterator { private static final int POST_SPLIT_CHARACTERISTICS = IntSpliterators.SET_SPLITERATOR_CHARACTERISTICS & ~java.util.Spliterator.SIZED; /** The index (which bucket) of the next item to give to the action. * Unlike {@link SetIterator}, this counts up instead of down. */ int pos = 0; /** The maximum bucket (exclusive) to iterate to */ int max = n; /** An upwards counter counting how many we have given */ int c = 0; /** A boolean telling us whether we should return the null key. */ boolean mustReturnNull = IntOpenHashSet.this.containsNull; boolean hasSplit = false; SetSpliterator() {} SetSpliterator(int pos, int max, boolean mustReturnNull, boolean hasSplit) { this.pos = pos; this.max = max; this.mustReturnNull = mustReturnNull; this.hasSplit = hasSplit; } @Override public boolean tryAdvance(final java.util.function.IntConsumer action) { if (mustReturnNull) { mustReturnNull = false; ++c; action.accept(key[n]); return true; } final int key[] = IntOpenHashSet.this.key; while (pos < max) { if (! ( (key[pos]) == (0) )) { ++c; action.accept(key[pos++]); return true; } else { ++pos; } } return false; } @Override public void forEachRemaining(final java.util.function.IntConsumer action) { final int key[] = IntOpenHashSet.this.key; if (mustReturnNull) { mustReturnNull = false; action.accept(key[n]); ++c; } while (pos < max) { if (! ( (key[pos]) == (0) )) { action.accept(key[pos]); ++c; } ++pos; } } @Override public int characteristics() { return hasSplit ? POST_SPLIT_CHARACTERISTICS : IntSpliterators.SET_SPLITERATOR_CHARACTERISTICS; } @Override public long estimateSize() { if (!hasSplit) { // Root spliterator; we know how many are remaining. return size - c; } else { // After we split, we can no longer know exactly how many we have (or at least not efficiently). // (size / n) * (max - pos) aka currentTableDensity * numberOfBucketsLeft seems like a good estimate. return Math.min(size - c, (long)(((double)realSize() / n) * (max - pos)) + (mustReturnNull ? 1 : 0)); } } @Override public SetSpliterator trySplit() { if (pos >= max - 1) return null; int retLen = (max - pos) >> 1; if (retLen <= 1) return null; int myNewPos = pos + retLen; int retPos = pos; int retMax = myNewPos; // Since null is returned first, and the convention is that the returned split is the prefix of elements, // the split will take care of returning null (if needed), and we won't return it anymore. SetSpliterator split = new SetSpliterator(retPos, retMax, mustReturnNull, true); this.pos = myNewPos; this.mustReturnNull = false; this.hasSplit = true; return split; } @Override public long skip(long n) { if (n < 0) throw new IllegalArgumentException("Argument must be nonnegative: " + n); if (n == 0) return 0; long skipped = 0; if (mustReturnNull) { mustReturnNull = false; ++skipped; --n; } final int key[] = IntOpenHashSet.this.key; while (pos < max && n > 0) { if (! ( (key[pos++]) == (0) )) { ++skipped; --n; } } return skipped; } } @Override public IntSpliterator spliterator() { return new SetSpliterator(); } @Override public void forEach(final java.util.function.IntConsumer action) { if (containsNull) action.accept(key[n]); final int key[] = this.key; for(int pos = n; pos-- != 0; ) if (! ( (key[pos]) == (0) )) action.accept(key[pos]); } /** Rehashes this set, making the table as small as possible. * *

This method rehashes the table to the smallest size satisfying the * load factor. It can be used when the set will not be changed anymore, so * to optimize access speed and size. * *

If the table size is already the minimum possible, this method * does nothing. * * @return true if there was enough memory to trim the set. * @see #trim(int) */ public boolean trim() { return trim(size); } /** Rehashes this set if the table is too large. * *

Let N be the smallest table size that can hold * max(n,{@link #size()}) entries, still satisfying the load factor. If the current * table size is smaller than or equal to N, this method does * nothing. Otherwise, it rehashes this set in a table of size * N. * *

This method is useful when reusing sets. {@linkplain #clear() Clearing a * set} leaves the table size untouched. If you are reusing a set * many times, you can call this method with a typical * size to avoid keeping around a very large table just * because of a few large transient sets. * * @param n the threshold for the trimming. * @return true if there was enough memory to trim the set. * @see #trim() */ public boolean trim(final int n) { final int l = HashCommon.nextPowerOfTwo((int)Math.ceil(n / f)); if (l >= this.n || size > maxFill(l, f)) return true; try { rehash(l); } catch(OutOfMemoryError cantDoIt) { return false; } return true; } /** Rehashes the set. * *

This method implements the basic rehashing strategy, and may be * overriden by subclasses implementing different rehashing strategies (e.g., * disk-based rehashing). However, you should not override this method * unless you understand the internal workings of this class. * * @param newN the new size */ protected void rehash(final int newN) { final int key[] = this.key; final int mask = newN - 1; // Note that this is used by the hashing macro final int newKey[] = new int[newN + 1]; int i = n, pos; for(int j = realSize(); j-- != 0;) { while(( (key[--i]) == (0) )); if (! ( (newKey[pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (key[i]) ) ) & mask]) == (0) )) while (! ( (newKey[pos = (pos + 1) & mask]) == (0) )); newKey[pos] = key[i]; } n = newN; this.mask = mask; maxFill = maxFill(n, f); this.key = newKey; } /** Returns a deep copy of this set. * *

This method performs a deep copy of this hash set; the data stored in the * set, however, is not cloned. Note that this makes a difference only for object keys. * * @return a deep copy of this set. */ @Override public IntOpenHashSet clone() { IntOpenHashSet c; try { c = (IntOpenHashSet )super.clone(); } catch(CloneNotSupportedException cantHappen) { throw new InternalError(); } c.key = key.clone(); c.containsNull = containsNull; return c; } /** Returns a hash code for this set. * * This method overrides the generic method provided by the superclass. * Since {@code equals()} is not overriden, it is important * that the value returned by this method is the same value as * the one returned by the overriden method. * * @return a hash code for this set. */ @Override public int hashCode() { int h = 0; for(int j = realSize(), i = 0; j-- != 0;) { while(( (key[i]) == (0) )) i++; h += (key[i]); i++; } // Zero / null have hash zero. return h; } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { final IntIterator i = iterator(); s.defaultWriteObject(); for(int j = size; j-- != 0;) s.writeInt(i.nextInt()); } private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); n = arraySize(size, f); maxFill = maxFill(n, f); mask = n - 1; final int key[] = this.key = new int[n + 1]; int k; for(int i = size, pos; i-- != 0;) { k = s.readInt(); if (( (k) == (0) )) { pos = n; containsNull = true; } else { if (! ( (key[pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (k) ) ) & mask]) == (0) )) while (! ( (key[pos = (pos + 1) & mask]) == (0) )); } key[pos] = k; } if (ASSERTS) checkTable(); } private void checkTable() {} }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy