All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jgrapht.alg.linkprediction.HubDepressedIndexLinkPrediction Maven / Gradle / Ivy

/*
 * (C) Copyright 2020-2021, by Dimitrios Michail and Contributors.
 *
 * JGraphT : a free Java graph-theory library
 *
 * See the CONTRIBUTORS.md file distributed with this work for additional
 * information regarding copyright ownership.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Eclipse Public License 2.0 which is available at
 * http://www.eclipse.org/legal/epl-2.0, or the
 * GNU Lesser General Public License v2.1 or later
 * which is available at
 * http://www.gnu.org/licenses/old-licenses/lgpl-2.1-standalone.html.
 *
 * SPDX-License-Identifier: EPL-2.0 OR LGPL-2.1-or-later
 */
package org.jgrapht.alg.linkprediction;

import java.util.HashSet;
import java.util.List;
import java.util.Objects;
import java.util.Set;

import org.jgrapht.Graph;
import org.jgrapht.Graphs;
import org.jgrapht.alg.interfaces.LinkPredictionAlgorithm;
import org.jgrapht.alg.util.Pair;

/**
 * Predict links using the Hub Depressed Index.
 * 
 * 

* This is a local method which computes $s_{xy} = * \frac{2|\Gamma(u)\cap\Gamma(v))|}{max(k(u),k(v))}$ where for a node $v$, $\Gamma(v)$ denotes the * set of neighbors of $v$ and $k(v) = |\Gamma(v)|$ denotes the degree of $v$. *

* * See the following paper: *
    *
  • E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, A.-L. Barabási, Science 297, 1553 * (2002)
  • *
* * @param the graph vertex type * @param the graph edge type * * @author Dimitrios Michail */ public class HubDepressedIndexLinkPrediction implements LinkPredictionAlgorithm { private Graph graph; /** * Create a new prediction * * @param graph the input graph */ public HubDepressedIndexLinkPrediction(Graph graph) { this.graph = Objects.requireNonNull(graph); } @Override public double predict(V u, V v) { int du = graph.outDegreeOf(u); int dv = graph.outDegreeOf(v); if (du == 0 && dv == 0) { throw new LinkPredictionIndexNotWellDefinedException( "Both vertices have zero neighbors", Pair.of(u, v)); } List gu = Graphs.successorListOf(graph, u); List gv = Graphs.successorListOf(graph, v); Set intersection = new HashSet<>(gu); intersection.retainAll(gv); return (double) intersection.size() / Math.max(du, dv); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy