All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jctools.maps.ConcurrentAutoTable Maven / Gradle / Ivy

There is a newer version: 1.52.1
Show newest version
/*
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.jctools.maps;
import static org.jctools.util.UnsafeAccess.UNSAFE;

import java.io.Serializable;
import java.util.concurrent.atomic.AtomicReferenceFieldUpdater;


/**
 * An auto-resizing table of {@code longs}, supporting low-contention CAS
 * operations.  Updates are done with CAS's to no particular table element.
 * The intent is to support highly scalable counters, r/w locks, and other
 * structures where the updates are associative, loss-free (no-brainer), and
 * otherwise happen at such a high volume that the cache contention for
 * CAS'ing a single word is unacceptable.
 *
 * @since 1.5
 * @author Cliff Click
 */
public class ConcurrentAutoTable implements Serializable {

  // --- public interface ---

  /**
   * Add the given value to current counter value.  Concurrent updates will
   * not be lost, but addAndGet or getAndAdd are not implemented because the
   * total counter value (i.e., {@link #get}) is not atomically updated.
   * Updates are striped across an array of counters to avoid cache contention
   * and has been tested with performance scaling linearly up to 768 CPUs.
   */
  public void add( long x ) { add_if(  x); }
  /** {@link #add} with -1 */
  public void decrement()   { add_if(-1L); }
  /** {@link #add} with +1 */
  public void increment()   { add_if( 1L); }

  /** Atomically set the sum of the striped counters to specified value.
   *  Rather more expensive than a simple store, in order to remain atomic.
   */
  public void set( long x ) {
    CAT newcat = new CAT(null,4,x);
    // Spin until CAS works
    while( !CAS_cat(_cat,newcat) ) {/*empty*/}
  }

  /**
   * Current value of the counter.  Since other threads are updating furiously
   * the value is only approximate, but it includes all counts made by the
   * current thread.  Requires a pass over the internally striped counters.
   */
  public long get()       { return      _cat.sum(); }
  /** Same as {@link #get}, included for completeness. */
  public int  intValue()  { return (int)_cat.sum(); }
  /** Same as {@link #get}, included for completeness. */
  public long longValue() { return      _cat.sum(); }

  /**
   * A cheaper {@link #get}.  Updated only once/millisecond, but as fast as a
   * simple load instruction when not updating.
   */
  public long estimate_get( ) { return _cat.estimate_sum(); }

  /**
   * Return the counter's {@code long} value converted to a string.
   */
  public String toString() { return _cat.toString(); }

  /**
   * A more verbose print than {@link #toString}, showing internal structure.
   * Useful for debugging.
   */
  public void print() { _cat.print(); }

  /**
   * Return the internal counter striping factor.  Useful for diagnosing
   * performance problems.
   */
  public int internal_size() { return _cat._t.length; }

  // Only add 'x' to some slot in table, hinted at by 'hash'.  The sum can
  // overflow.  Value is CAS'd so no counts are lost.  The CAS is retried until
  // it succeeds.  Returned value is the old value.
  private long add_if( long x ) { return _cat.add_if(x,hash(),this); }

  // The underlying array of concurrently updated long counters
  private volatile CAT _cat = new CAT(null,16/*Start Small, Think Big!*/,0L);
  private static AtomicReferenceFieldUpdater _catUpdater =
    AtomicReferenceFieldUpdater.newUpdater(ConcurrentAutoTable.class,CAT.class, "_cat");
  private boolean CAS_cat( CAT oldcat, CAT newcat ) { return _catUpdater.compareAndSet(this,oldcat,newcat); }

  // Hash spreader
  private static int hash() {
    //int h = (int)Thread.currentThread().getId();
    int h = System.identityHashCode(Thread.currentThread());
    return h<<3;                // Pad out cache lines.  The goal is to avoid cache-line contention
  }

  // --- CAT -----------------------------------------------------------------
  private static class CAT implements Serializable {

    // Unsafe crud: get a function which will CAS arrays
    private static final int _Lbase  = UNSAFE.arrayBaseOffset(long[].class);
    private static final int _Lscale = UNSAFE.arrayIndexScale(long[].class);
    private static long rawIndex(long[] ary, int i) {
      assert i >= 0 && i < ary.length;
      return _Lbase + (i * (long)_Lscale);
    }
    private static boolean CAS( long[] A, int idx, long old, long nnn ) {
      return UNSAFE.compareAndSwapLong( A, rawIndex(A,idx), old, nnn );
    }

    //volatile long _resizers;    // count of threads attempting a resize
    //static private final AtomicLongFieldUpdater _resizerUpdater =
    //  AtomicLongFieldUpdater.newUpdater(CAT.class, "_resizers");

    private final CAT _next;
    private volatile long _fuzzy_sum_cache;
    private volatile long _fuzzy_time;
    private static final int MAX_SPIN=1;
    private final long[] _t;     // Power-of-2 array of longs

    CAT( CAT next, int sz, long init ) {
      _next = next;
      _t = new long[sz];
      _t[0] = init;
    }

    // Only add 'x' to some slot in table, hinted at by 'hash'.  The sum can
    // overflow.  Value is CAS'd so no counts are lost.  The CAS is attempted
    // ONCE.
    public long add_if( long x, int hash, ConcurrentAutoTable master ) {
      final long[] t = _t;
      final int idx = hash & (t.length-1);
      // Peel loop; try once fast
      long old = t[idx];
      final boolean ok = CAS( t, idx, old, old+x );
      if( ok ) return old;      // Got it
      // Try harder
      int cnt=0;
      while( true ) {
        old = t[idx];
        if( CAS( t, idx, old, old+x ) ) break; // Got it!
        cnt++;
      }
      if( cnt < MAX_SPIN ) return old; // Allowable spin loop count
      if( t.length >= 1024*1024 ) return old; // too big already

      // Too much contention; double array size in an effort to reduce contention
      //long r = _resizers;
      //final int newbytes = (t.length<<1)<<3/*word to bytes*/;
      //while( !_resizerUpdater.compareAndSet(this,r,r+newbytes) )
      //  r = _resizers;
      //r += newbytes;
      if( master._cat != this ) return old; // Already doubled, don't bother
      //if( (r>>17) != 0 ) {      // Already too much allocation attempts?
      //  // We could use a wait with timeout, so we'll wakeup as soon as the new
      //  // table is ready, or after the timeout in any case.  Annoyingly, this
      //  // breaks the non-blocking property - so for now we just briefly sleep.
      //  //synchronized( this ) { wait(8*megs); }         // Timeout - we always wakeup
      //  try { Thread.sleep(r>>17); } catch( InterruptedException e ) { }
      //  if( master._cat != this ) return old;
      //}

      CAT newcat = new CAT(this,t.length*2,0);
      // Take 1 stab at updating the CAT with the new larger size.  If this
      // fails, we assume some other thread already expanded the CAT - so we
      // do not need to retry until it succeeds.
      while( master._cat == this && !master.CAS_cat(this,newcat) ) {/*empty*/}
      return old;
    }


    // Return the current sum of all things in the table.  Writers can be
    // updating the table furiously, so the sum is only locally accurate.
    public long sum( ) {
      long sum = _next == null ? 0 : _next.sum(); // Recursively get cached sum
      final long[] t = _t;
      for( long cnt : t ) sum += cnt;
      return sum;
    }

    // Fast fuzzy version.  Used a cached value until it gets old, then re-up
    // the cache.
    public long estimate_sum( ) {
      // For short tables, just do the work
      if( _t.length <= 64 ) return sum();
      // For bigger tables, periodically freshen a cached value
      long millis = System.currentTimeMillis();
      if( _fuzzy_time != millis ) { // Time marches on?
        _fuzzy_sum_cache = sum(); // Get sum the hard way
        _fuzzy_time = millis;   // Indicate freshness of cached value
      }
      return _fuzzy_sum_cache;  // Return cached sum
    }

    public String toString( ) { return Long.toString(sum()); }

    public void print() {
      long[] t = _t;
      System.out.print("["+t[0]);
      for( int i=1; i




© 2015 - 2024 Weber Informatics LLC | Privacy Policy