All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jctools.queues.MpmcArrayQueue Maven / Gradle / Ivy

/*
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.jctools.queues;

import org.jctools.util.RangeUtil;

import static org.jctools.util.UnsafeAccess.UNSAFE;
import static org.jctools.util.UnsafeAccess.fieldOffset;
import static org.jctools.util.UnsafeLongArrayAccess.*;
import static org.jctools.util.UnsafeRefArrayAccess.*;

abstract class MpmcArrayQueueL1Pad extends ConcurrentSequencedCircularArrayQueue
{
    byte b000,b001,b002,b003,b004,b005,b006,b007;//  8b
    byte b010,b011,b012,b013,b014,b015,b016,b017;// 16b
    byte b020,b021,b022,b023,b024,b025,b026,b027;// 24b
    byte b030,b031,b032,b033,b034,b035,b036,b037;// 32b
    byte b040,b041,b042,b043,b044,b045,b046,b047;// 40b
    byte b050,b051,b052,b053,b054,b055,b056,b057;// 48b
    byte b060,b061,b062,b063,b064,b065,b066,b067;// 56b
    byte b070,b071,b072,b073,b074,b075,b076,b077;// 64b
    byte b100,b101,b102,b103,b104,b105,b106,b107;// 72b
    byte b110,b111,b112,b113,b114,b115,b116,b117;// 80b
    byte b120,b121,b122,b123,b124,b125,b126,b127;// 88b
    byte b130,b131,b132,b133,b134,b135,b136,b137;// 96b
    byte b140,b141,b142,b143,b144,b145,b146,b147;//104b
    byte b150,b151,b152,b153,b154,b155,b156,b157;//112b
    byte b160,b161,b162,b163,b164,b165,b166,b167;//120b
    // byte b170,b171,b172,b173,b174,b175,b176,b177;//128b

    MpmcArrayQueueL1Pad(int capacity)
    {
        super(capacity);
    }
}

//$gen:ordered-fields
abstract class MpmcArrayQueueProducerIndexField extends MpmcArrayQueueL1Pad
{
    private final static long P_INDEX_OFFSET = fieldOffset(MpmcArrayQueueProducerIndexField.class, "producerIndex");

    private volatile long producerIndex;

    MpmcArrayQueueProducerIndexField(int capacity)
    {
        super(capacity);
    }

    @Override
    public final long lvProducerIndex()
    {
        return producerIndex;
    }

    final boolean casProducerIndex(long expect, long newValue)
    {
        return UNSAFE.compareAndSwapLong(this, P_INDEX_OFFSET, expect, newValue);
    }
}

abstract class MpmcArrayQueueL2Pad extends MpmcArrayQueueProducerIndexField
{
    byte b000,b001,b002,b003,b004,b005,b006,b007;//  8b
    byte b010,b011,b012,b013,b014,b015,b016,b017;// 16b
    byte b020,b021,b022,b023,b024,b025,b026,b027;// 24b
    byte b030,b031,b032,b033,b034,b035,b036,b037;// 32b
    byte b040,b041,b042,b043,b044,b045,b046,b047;// 40b
    byte b050,b051,b052,b053,b054,b055,b056,b057;// 48b
    byte b060,b061,b062,b063,b064,b065,b066,b067;// 56b
    byte b070,b071,b072,b073,b074,b075,b076,b077;// 64b
    byte b100,b101,b102,b103,b104,b105,b106,b107;// 72b
    byte b110,b111,b112,b113,b114,b115,b116,b117;// 80b
    byte b120,b121,b122,b123,b124,b125,b126,b127;// 88b
    byte b130,b131,b132,b133,b134,b135,b136,b137;// 96b
    byte b140,b141,b142,b143,b144,b145,b146,b147;//104b
    byte b150,b151,b152,b153,b154,b155,b156,b157;//112b
    byte b160,b161,b162,b163,b164,b165,b166,b167;//120b
    byte b170,b171,b172,b173,b174,b175,b176,b177;//128b

    MpmcArrayQueueL2Pad(int capacity)
    {
        super(capacity);
    }
}

//$gen:ordered-fields
abstract class MpmcArrayQueueConsumerIndexField extends MpmcArrayQueueL2Pad
{
    private final static long C_INDEX_OFFSET = fieldOffset(MpmcArrayQueueConsumerIndexField.class, "consumerIndex");

    private volatile long consumerIndex;

    MpmcArrayQueueConsumerIndexField(int capacity)
    {
        super(capacity);
    }

    @Override
    public final long lvConsumerIndex()
    {
        return consumerIndex;
    }

    final boolean casConsumerIndex(long expect, long newValue)
    {
        return UNSAFE.compareAndSwapLong(this, C_INDEX_OFFSET, expect, newValue);
    }
}

abstract class MpmcArrayQueueL3Pad extends MpmcArrayQueueConsumerIndexField
{
    byte b000,b001,b002,b003,b004,b005,b006,b007;//  8b
    byte b010,b011,b012,b013,b014,b015,b016,b017;// 16b
    byte b020,b021,b022,b023,b024,b025,b026,b027;// 24b
    byte b030,b031,b032,b033,b034,b035,b036,b037;// 32b
    byte b040,b041,b042,b043,b044,b045,b046,b047;// 40b
    byte b050,b051,b052,b053,b054,b055,b056,b057;// 48b
    byte b060,b061,b062,b063,b064,b065,b066,b067;// 56b
    byte b070,b071,b072,b073,b074,b075,b076,b077;// 64b
    byte b100,b101,b102,b103,b104,b105,b106,b107;// 72b
    byte b110,b111,b112,b113,b114,b115,b116,b117;// 80b
    byte b120,b121,b122,b123,b124,b125,b126,b127;// 88b
    byte b130,b131,b132,b133,b134,b135,b136,b137;// 96b
    byte b140,b141,b142,b143,b144,b145,b146,b147;//104b
    byte b150,b151,b152,b153,b154,b155,b156,b157;//112b
    byte b160,b161,b162,b163,b164,b165,b166,b167;//120b
    byte b170,b171,b172,b173,b174,b175,b176,b177;//128b

    MpmcArrayQueueL3Pad(int capacity)
    {
        super(capacity);
    }
}

/**
 * A Multi-Producer-Multi-Consumer queue based on a {@link org.jctools.queues.ConcurrentCircularArrayQueue}. This
 * implies that any and all threads may call the offer/poll/peek methods and correctness is maintained. 
* This implementation follows patterns documented on the package level for False Sharing protection.
* The algorithm for offer/poll is an adaptation of the one put forward by D. Vyukov (See here). The original * algorithm uses an array of structs which should offer nice locality properties but is sadly not possible in * Java (waiting on Value Types or similar). The alternative explored here utilizes 2 arrays, one for each * field of the struct. There is a further alternative in the experimental project which uses iteration phase * markers to achieve the same algo and is closer structurally to the original, but sadly does not perform as * well as this implementation.
*

* Tradeoffs to keep in mind: *

    *
  1. Padding for false sharing: counter fields and queue fields are all padded as well as either side of * both arrays. We are trading memory to avoid false sharing(active and passive). *
  2. 2 arrays instead of one: The algorithm requires an extra array of longs matching the size of the * elements array. This is doubling/tripling the memory allocated for the buffer. *
  3. Power of 2 capacity: Actual elements buffer (and sequence buffer) is the closest power of 2 larger or * equal to the requested capacity. *
*/ public class MpmcArrayQueue extends MpmcArrayQueueL3Pad { public static final int MAX_LOOK_AHEAD_STEP = Integer.getInteger("jctools.mpmc.max.lookahead.step", 4096); private final int lookAheadStep; public MpmcArrayQueue(final int capacity) { super(RangeUtil.checkGreaterThanOrEqual(capacity, 2, "capacity")); lookAheadStep = Math.max(2, Math.min(capacity() / 4, MAX_LOOK_AHEAD_STEP)); } @Override public boolean offer(final E e) { if (null == e) { throw new NullPointerException(); } final long mask = this.mask; final long capacity = mask + 1; final long[] sBuffer = sequenceBuffer; long pIndex; long seqOffset; long seq; long cIndex = Long.MIN_VALUE;// start with bogus value, hope we don't need it do { pIndex = lvProducerIndex(); seqOffset = calcCircularLongElementOffset(pIndex, mask); seq = lvLongElement(sBuffer, seqOffset); // consumer has not moved this seq forward, it's as last producer left if (seq < pIndex) { // Extra check required to ensure [Queue.offer == false iff queue is full] if (pIndex - capacity >= cIndex && // test against cached cIndex pIndex - capacity >= (cIndex = lvConsumerIndex())) // test against latest cIndex { return false; } else { seq = pIndex + 1; // (+) hack to make it go around again without CAS } } } while (seq > pIndex || // another producer has moved the sequence(or +) !casProducerIndex(pIndex, pIndex + 1)); // failed to increment // casProducerIndex ensures correct construction spRefElement(buffer, calcCircularRefElementOffset(pIndex, mask), e); // seq++; soLongElement(sBuffer, seqOffset, pIndex + 1); return true; } /** * {@inheritDoc} *

* Because return null indicates queue is empty we cannot simply rely on next element visibility for poll * and must test producer index when next element is not visible. */ @Override public E poll() { // local load of field to avoid repeated loads after volatile reads final long[] sBuffer = sequenceBuffer; final long mask = this.mask; long cIndex; long seq; long seqOffset; long expectedSeq; long pIndex = -1; // start with bogus value, hope we don't need it do { cIndex = lvConsumerIndex(); seqOffset = calcCircularLongElementOffset(cIndex, mask); seq = lvLongElement(sBuffer, seqOffset); expectedSeq = cIndex + 1; if (seq < expectedSeq) { // slot has not been moved by producer if (cIndex >= pIndex && // test against cached pIndex cIndex == (pIndex = lvProducerIndex())) // update pIndex if we must { // strict empty check, this ensures [Queue.poll() == null iff isEmpty()] return null; } else { seq = expectedSeq + 1; // trip another go around } } } while (seq > expectedSeq || // another consumer beat us to it !casConsumerIndex(cIndex, cIndex + 1)); // failed the CAS final long offset = calcCircularRefElementOffset(cIndex, mask); final E e = lpRefElement(buffer, offset); spRefElement(buffer, offset, null); // i.e. seq += capacity soLongElement(sBuffer, seqOffset, cIndex + mask + 1); return e; } @Override public E peek() { // local load of field to avoid repeated loads after volatile reads final long[] sBuffer = sequenceBuffer; final long mask = this.mask; long cIndex; long seq; long seqOffset; long expectedSeq; long pIndex = -1; // start with bogus value, hope we don't need it E e; while (true) { cIndex = lvConsumerIndex(); seqOffset = calcCircularLongElementOffset(cIndex, mask); seq = lvLongElement(sBuffer, seqOffset); expectedSeq = cIndex + 1; if (seq < expectedSeq) { // slot has not been moved by producer if (cIndex >= pIndex && // test against cached pIndex cIndex == (pIndex = lvProducerIndex())) // update pIndex if we must { // strict empty check, this ensures [Queue.poll() == null iff isEmpty()] return null; } } else if (seq == expectedSeq) { final long offset = calcCircularRefElementOffset(cIndex, mask); e = lvRefElement(buffer, offset); if (lvConsumerIndex() == cIndex) return e; } } } @Override public boolean relaxedOffer(E e) { if (null == e) { throw new NullPointerException(); } final long mask = this.mask; final long[] sBuffer = sequenceBuffer; long pIndex; long seqOffset; long seq; do { pIndex = lvProducerIndex(); seqOffset = calcCircularLongElementOffset(pIndex, mask); seq = lvLongElement(sBuffer, seqOffset); if (seq < pIndex) { // slot not cleared by consumer yet return false; } } while (seq > pIndex || // another producer has moved the sequence !casProducerIndex(pIndex, pIndex + 1)); // failed to increment // casProducerIndex ensures correct construction spRefElement(buffer, calcCircularRefElementOffset(pIndex, mask), e); soLongElement(sBuffer, seqOffset, pIndex + 1); return true; } @Override public E relaxedPoll() { final long[] sBuffer = sequenceBuffer; final long mask = this.mask; long cIndex; long seqOffset; long seq; long expectedSeq; do { cIndex = lvConsumerIndex(); seqOffset = calcCircularLongElementOffset(cIndex, mask); seq = lvLongElement(sBuffer, seqOffset); expectedSeq = cIndex + 1; if (seq < expectedSeq) { return null; } } while (seq > expectedSeq || // another consumer beat us to it !casConsumerIndex(cIndex, cIndex + 1)); // failed the CAS final long offset = calcCircularRefElementOffset(cIndex, mask); final E e = lpRefElement(buffer, offset); spRefElement(buffer, offset, null); soLongElement(sBuffer, seqOffset, cIndex + mask + 1); return e; } @Override public E relaxedPeek() { // local load of field to avoid repeated loads after volatile reads final long[] sBuffer = sequenceBuffer; final long mask = this.mask; long cIndex; long seq; long seqOffset; long expectedSeq; E e; do { cIndex = lvConsumerIndex(); seqOffset = calcCircularLongElementOffset(cIndex, mask); seq = lvLongElement(sBuffer, seqOffset); expectedSeq = cIndex + 1; if (seq < expectedSeq) { return null; } else if (seq == expectedSeq) { final long offset = calcCircularRefElementOffset(cIndex, mask); e = lvRefElement(buffer, offset); if (lvConsumerIndex() == cIndex) return e; } } while (true); } @Override public int drain(Consumer c, int limit) { if (null == c) throw new IllegalArgumentException("c is null"); if (limit < 0) throw new IllegalArgumentException("limit is negative: " + limit); if (limit == 0) return 0; final long[] sBuffer = sequenceBuffer; final long mask = this.mask; final E[] buffer = this.buffer; final int maxLookAheadStep = Math.min(this.lookAheadStep, limit); int consumed = 0; while (consumed < limit) { final int remaining = limit - consumed; final int lookAheadStep = Math.min(remaining, maxLookAheadStep); final long cIndex = lvConsumerIndex(); final long lookAheadIndex = cIndex + lookAheadStep - 1; final long lookAheadSeqOffset = calcCircularLongElementOffset(lookAheadIndex, mask); final long lookAheadSeq = lvLongElement(sBuffer, lookAheadSeqOffset); final long expectedLookAheadSeq = lookAheadIndex + 1; if (lookAheadSeq == expectedLookAheadSeq && casConsumerIndex(cIndex, expectedLookAheadSeq)) { for (int i = 0; i < lookAheadStep; i++) { final long index = cIndex + i; final long seqOffset = calcCircularLongElementOffset(index, mask); final long offset = calcCircularRefElementOffset(index, mask); final long expectedSeq = index + 1; while (lvLongElement(sBuffer, seqOffset) != expectedSeq) { } final E e = lpRefElement(buffer, offset); spRefElement(buffer, offset, null); soLongElement(sBuffer, seqOffset, index + mask + 1); c.accept(e); } consumed += lookAheadStep; } else { if (lookAheadSeq < expectedLookAheadSeq) { if (notAvailable(cIndex, mask, sBuffer, cIndex + 1)) { return consumed; } } return consumed + drainOneByOne(c, remaining); } } return limit; } private int drainOneByOne(Consumer c, int limit) { final long[] sBuffer = sequenceBuffer; final long mask = this.mask; final E[] buffer = this.buffer; long cIndex; long seqOffset; long seq; long expectedSeq; for (int i = 0; i < limit; i++) { do { cIndex = lvConsumerIndex(); seqOffset = calcCircularLongElementOffset(cIndex, mask); seq = lvLongElement(sBuffer, seqOffset); expectedSeq = cIndex + 1; if (seq < expectedSeq) { return i; } } while (seq > expectedSeq || // another consumer beat us to it !casConsumerIndex(cIndex, cIndex + 1)); // failed the CAS final long offset = calcCircularRefElementOffset(cIndex, mask); final E e = lpRefElement(buffer, offset); spRefElement(buffer, offset, null); soLongElement(sBuffer, seqOffset, cIndex + mask + 1); c.accept(e); } return limit; } @Override public int fill(Supplier s, int limit) { if (null == s) throw new IllegalArgumentException("supplier is null"); if (limit < 0) throw new IllegalArgumentException("limit is negative:" + limit); if (limit == 0) return 0; final long[] sBuffer = sequenceBuffer; final long mask = this.mask; final E[] buffer = this.buffer; final int maxLookAheadStep = Math.min(this.lookAheadStep, limit); int produced = 0; while (produced < limit) { final int remaining = limit - produced; final int lookAheadStep = Math.min(remaining, maxLookAheadStep); final long pIndex = lvProducerIndex(); final long lookAheadIndex = pIndex + lookAheadStep - 1; final long lookAheadSeqOffset = calcCircularLongElementOffset(lookAheadIndex, mask); final long lookAheadSeq = lvLongElement(sBuffer, lookAheadSeqOffset); final long expectedLookAheadSeq = lookAheadIndex; if (lookAheadSeq == expectedLookAheadSeq && casProducerIndex(pIndex, expectedLookAheadSeq + 1)) { for (int i = 0; i < lookAheadStep; i++) { final long index = pIndex + i; final long seqOffset = calcCircularLongElementOffset(index, mask); final long offset = calcCircularRefElementOffset(index, mask); while (lvLongElement(sBuffer, seqOffset) != index) { } // Ordered store ensures correct construction soRefElement(buffer, offset, s.get()); soLongElement(sBuffer, seqOffset, index + 1); } produced += lookAheadStep; } else { if (lookAheadSeq < expectedLookAheadSeq) { if (notAvailable(pIndex, mask, sBuffer, pIndex)) { return produced; } } return produced + fillOneByOne(s, remaining); } } return limit; } private boolean notAvailable(long index, long mask, long[] sBuffer, long expectedSeq) { final long seqOffset = calcCircularLongElementOffset(index, mask); final long seq = lvLongElement(sBuffer, seqOffset); if (seq < expectedSeq) { return true; } return false; } private int fillOneByOne(Supplier s, int limit) { final long[] sBuffer = sequenceBuffer; final long mask = this.mask; final E[] buffer = this.buffer; long pIndex; long seqOffset; long seq; for (int i = 0; i < limit; i++) { do { pIndex = lvProducerIndex(); seqOffset = calcCircularLongElementOffset(pIndex, mask); seq = lvLongElement(sBuffer, seqOffset); if (seq < pIndex) { // slot not cleared by consumer yet return i; } } while (seq > pIndex || // another producer has moved the sequence !casProducerIndex(pIndex, pIndex + 1)); // failed to increment // Ordered store ensures correct construction soRefElement(buffer, calcCircularRefElementOffset(pIndex, mask), s.get()); soLongElement(sBuffer, seqOffset, pIndex + 1); } return limit; } @Override public int drain(Consumer c) { return MessagePassingQueueUtil.drain(this, c); } @Override public int fill(Supplier s) { return MessagePassingQueueUtil.fillBounded(this, s); } @Override public void drain(Consumer c, WaitStrategy w, ExitCondition exit) { MessagePassingQueueUtil.drain(this, c, w, exit); } @Override public void fill(Supplier s, WaitStrategy wait, ExitCondition exit) { MessagePassingQueueUtil.fill(this, s, wait, exit); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy