All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jctools.queues.unpadded.SpscGrowableUnpaddedArrayQueue Maven / Gradle / Ivy

/*
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.jctools.queues.unpadded;

import org.jctools.util.Pow2;
import org.jctools.util.RangeUtil;
import org.jctools.util.SpscLookAheadUtil;
import static org.jctools.queues.LinkedArrayQueueUtil.length;
import static org.jctools.util.UnsafeRefArrayAccess.*;
import org.jctools.queues.*;

/**
 * NOTE: This class was automatically generated by org.jctools.queues.unpadded.JavaParsingUnpaddedQueueGenerator
 * which can found in the jctools-build module. The original source file is SpscGrowableArrayQueue.java.
 *
 * An SPSC array queue which starts at initialCapacity and grows to maxCapacity in linked chunks,
 * doubling theirs size every time until the full blown backing array is used.
 * The queue grows only when the current chunk is full and elements are not copied on
 * resize, instead a link to the new chunk is stored in the old chunk for the consumer to follow.
* * @param */ public class SpscGrowableUnpaddedArrayQueue extends BaseSpscLinkedUnpaddedArrayQueue { private final int maxQueueCapacity; private long lookAheadStep; public SpscGrowableUnpaddedArrayQueue(final int capacity) { this(Math.max(8, Pow2.roundToPowerOfTwo(capacity / 8)), capacity); } public SpscGrowableUnpaddedArrayQueue(final int chunkSize, final int capacity) { RangeUtil.checkGreaterThanOrEqual(capacity, 16, "capacity"); // minimal chunk size of eight makes sure minimal lookahead step is 2 RangeUtil.checkGreaterThanOrEqual(chunkSize, 8, "chunkSize"); maxQueueCapacity = Pow2.roundToPowerOfTwo(capacity); int chunkCapacity = Pow2.roundToPowerOfTwo(chunkSize); RangeUtil.checkLessThan(chunkCapacity, maxQueueCapacity, "chunkCapacity"); long mask = chunkCapacity - 1; // need extra element to point at next array E[] buffer = allocateRefArray(chunkCapacity + 1); producerBuffer = buffer; producerMask = mask; consumerBuffer = buffer; consumerMask = mask; // we know it's all empty to start with producerBufferLimit = mask - 1; adjustLookAheadStep(chunkCapacity); } @Override final boolean offerColdPath(final E[] buffer, final long mask, final long index, final long offset, final E v, final Supplier s) { final long lookAheadStep = this.lookAheadStep; // normal case, go around the buffer or resize if full (unless we hit max capacity) if (lookAheadStep > 0) { long lookAheadElementOffset = calcCircularRefElementOffset(index + lookAheadStep, mask); // Try and look ahead a number of elements so we don't have to do this all the time if (null == lvRefElement(buffer, lookAheadElementOffset)) { // joy, there's plenty of room producerBufferLimit = index + lookAheadStep - 1; writeToQueue(buffer, v == null ? s.get() : v, index, offset); return true; } // we're at max capacity, can use up last element final int maxCapacity = maxQueueCapacity; if (mask + 1 == maxCapacity) { if (null == lvRefElement(buffer, offset)) { writeToQueue(buffer, v == null ? s.get() : v, index, offset); return true; } // we're full and can't grow return false; } // not at max capacity, so must allow extra slot for next buffer pointer if (null == lvRefElement(buffer, calcCircularRefElementOffset(index + 1, mask))) { // buffer is not full writeToQueue(buffer, v == null ? s.get() : v, index, offset); } else { // allocate new buffer of same length final E[] newBuffer = allocateRefArray((int) (2 * (mask + 1) + 1)); producerBuffer = newBuffer; producerMask = length(newBuffer) - 2; final long offsetInNew = calcCircularRefElementOffset(index, producerMask); linkOldToNew(index, buffer, offset, newBuffer, offsetInNew, v == null ? s.get() : v); int newCapacity = (int) (producerMask + 1); if (newCapacity == maxCapacity) { long currConsumerIndex = lvConsumerIndex(); // use lookAheadStep to store the consumer distance from final buffer this.lookAheadStep = -(index - currConsumerIndex); producerBufferLimit = currConsumerIndex + maxCapacity; } else { producerBufferLimit = index + producerMask - 1; adjustLookAheadStep(newCapacity); } } return true; } else // the step is negative (or zero) in the period between allocating the max sized buffer and the // consumer starting on it { final long prevElementsInOtherBuffers = -lookAheadStep; // until the consumer starts using the current buffer we need to check consumer index to // verify size long currConsumerIndex = lvConsumerIndex(); int size = (int) (index - currConsumerIndex); // we're on max capacity or we wouldn't be here int maxCapacity = (int) mask + 1; if (size == maxCapacity) { // consumer index has not changed since adjusting the lookAhead index, we're full return false; } // if consumerIndex progressed enough so that current size indicates it is on same buffer long firstIndexInCurrentBuffer = producerBufferLimit - maxCapacity + prevElementsInOtherBuffers; if (currConsumerIndex >= firstIndexInCurrentBuffer) { // job done, we've now settled into our final state adjustLookAheadStep(maxCapacity); } else // consumer is still on some other buffer { // how many elements out of buffer? this.lookAheadStep = (int) (currConsumerIndex - firstIndexInCurrentBuffer); } producerBufferLimit = currConsumerIndex + maxCapacity; writeToQueue(buffer, v == null ? s.get() : v, index, offset); return true; } } private void adjustLookAheadStep(int capacity) { lookAheadStep = SpscLookAheadUtil.computeLookAheadStep(capacity); } @Override public int capacity() { return maxQueueCapacity; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy