org.jctools.queues.atomic.MpmcAtomicArrayQueue Maven / Gradle / Ivy
/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.jctools.queues.atomic;
import org.jctools.util.RangeUtil;
import java.util.concurrent.atomic.*;
import org.jctools.queues.*;
import static org.jctools.queues.atomic.AtomicQueueUtil.*;
/**
* NOTE: This class was automatically generated by org.jctools.queues.atomic.JavaParsingAtomicArrayQueueGenerator
* which can found in the jctools-build module. The original source file is MpmcArrayQueue.java.
*/
abstract class MpmcAtomicArrayQueueL1Pad extends SequencedAtomicReferenceArrayQueue {
// 8b
byte b000, b001, b002, b003, b004, b005, b006, b007;
// 16b
byte b010, b011, b012, b013, b014, b015, b016, b017;
// 24b
byte b020, b021, b022, b023, b024, b025, b026, b027;
// 32b
byte b030, b031, b032, b033, b034, b035, b036, b037;
// 40b
byte b040, b041, b042, b043, b044, b045, b046, b047;
// 48b
byte b050, b051, b052, b053, b054, b055, b056, b057;
// 56b
byte b060, b061, b062, b063, b064, b065, b066, b067;
// 64b
byte b070, b071, b072, b073, b074, b075, b076, b077;
// 72b
byte b100, b101, b102, b103, b104, b105, b106, b107;
// 80b
byte b110, b111, b112, b113, b114, b115, b116, b117;
// 88b
byte b120, b121, b122, b123, b124, b125, b126, b127;
// 96b
byte b130, b131, b132, b133, b134, b135, b136, b137;
// 104b
byte b140, b141, b142, b143, b144, b145, b146, b147;
// 112b
byte b150, b151, b152, b153, b154, b155, b156, b157;
// 120b
byte b160, b161, b162, b163, b164, b165, b166, b167;
// byte b170,b171,b172,b173,b174,b175,b176,b177;//128b
MpmcAtomicArrayQueueL1Pad(int capacity) {
super(capacity);
}
}
/**
* NOTE: This class was automatically generated by org.jctools.queues.atomic.JavaParsingAtomicArrayQueueGenerator
* which can found in the jctools-build module. The original source file is MpmcArrayQueue.java.
*/
abstract class MpmcAtomicArrayQueueProducerIndexField extends MpmcAtomicArrayQueueL1Pad {
private static final AtomicLongFieldUpdater P_INDEX_UPDATER = AtomicLongFieldUpdater.newUpdater(MpmcAtomicArrayQueueProducerIndexField.class, "producerIndex");
private volatile long producerIndex;
MpmcAtomicArrayQueueProducerIndexField(int capacity) {
super(capacity);
}
@Override
public final long lvProducerIndex() {
return producerIndex;
}
final boolean casProducerIndex(long expect, long newValue) {
return P_INDEX_UPDATER.compareAndSet(this, expect, newValue);
}
}
/**
* NOTE: This class was automatically generated by org.jctools.queues.atomic.JavaParsingAtomicArrayQueueGenerator
* which can found in the jctools-build module. The original source file is MpmcArrayQueue.java.
*/
abstract class MpmcAtomicArrayQueueL2Pad extends MpmcAtomicArrayQueueProducerIndexField {
// 8b
byte b000, b001, b002, b003, b004, b005, b006, b007;
// 16b
byte b010, b011, b012, b013, b014, b015, b016, b017;
// 24b
byte b020, b021, b022, b023, b024, b025, b026, b027;
// 32b
byte b030, b031, b032, b033, b034, b035, b036, b037;
// 40b
byte b040, b041, b042, b043, b044, b045, b046, b047;
// 48b
byte b050, b051, b052, b053, b054, b055, b056, b057;
// 56b
byte b060, b061, b062, b063, b064, b065, b066, b067;
// 64b
byte b070, b071, b072, b073, b074, b075, b076, b077;
// 72b
byte b100, b101, b102, b103, b104, b105, b106, b107;
// 80b
byte b110, b111, b112, b113, b114, b115, b116, b117;
// 88b
byte b120, b121, b122, b123, b124, b125, b126, b127;
// 96b
byte b130, b131, b132, b133, b134, b135, b136, b137;
// 104b
byte b140, b141, b142, b143, b144, b145, b146, b147;
// 112b
byte b150, b151, b152, b153, b154, b155, b156, b157;
// 120b
byte b160, b161, b162, b163, b164, b165, b166, b167;
// 128b
byte b170, b171, b172, b173, b174, b175, b176, b177;
MpmcAtomicArrayQueueL2Pad(int capacity) {
super(capacity);
}
}
/**
* NOTE: This class was automatically generated by org.jctools.queues.atomic.JavaParsingAtomicArrayQueueGenerator
* which can found in the jctools-build module. The original source file is MpmcArrayQueue.java.
*/
abstract class MpmcAtomicArrayQueueConsumerIndexField extends MpmcAtomicArrayQueueL2Pad {
private static final AtomicLongFieldUpdater C_INDEX_UPDATER = AtomicLongFieldUpdater.newUpdater(MpmcAtomicArrayQueueConsumerIndexField.class, "consumerIndex");
private volatile long consumerIndex;
MpmcAtomicArrayQueueConsumerIndexField(int capacity) {
super(capacity);
}
@Override
public final long lvConsumerIndex() {
return consumerIndex;
}
final boolean casConsumerIndex(long expect, long newValue) {
return C_INDEX_UPDATER.compareAndSet(this, expect, newValue);
}
}
/**
* NOTE: This class was automatically generated by org.jctools.queues.atomic.JavaParsingAtomicArrayQueueGenerator
* which can found in the jctools-build module. The original source file is MpmcArrayQueue.java.
*/
abstract class MpmcAtomicArrayQueueL3Pad extends MpmcAtomicArrayQueueConsumerIndexField {
// 8b
byte b000, b001, b002, b003, b004, b005, b006, b007;
// 16b
byte b010, b011, b012, b013, b014, b015, b016, b017;
// 24b
byte b020, b021, b022, b023, b024, b025, b026, b027;
// 32b
byte b030, b031, b032, b033, b034, b035, b036, b037;
// 40b
byte b040, b041, b042, b043, b044, b045, b046, b047;
// 48b
byte b050, b051, b052, b053, b054, b055, b056, b057;
// 56b
byte b060, b061, b062, b063, b064, b065, b066, b067;
// 64b
byte b070, b071, b072, b073, b074, b075, b076, b077;
// 72b
byte b100, b101, b102, b103, b104, b105, b106, b107;
// 80b
byte b110, b111, b112, b113, b114, b115, b116, b117;
// 88b
byte b120, b121, b122, b123, b124, b125, b126, b127;
// 96b
byte b130, b131, b132, b133, b134, b135, b136, b137;
// 104b
byte b140, b141, b142, b143, b144, b145, b146, b147;
// 112b
byte b150, b151, b152, b153, b154, b155, b156, b157;
// 120b
byte b160, b161, b162, b163, b164, b165, b166, b167;
// 128b
byte b170, b171, b172, b173, b174, b175, b176, b177;
MpmcAtomicArrayQueueL3Pad(int capacity) {
super(capacity);
}
}
/**
* NOTE: This class was automatically generated by org.jctools.queues.atomic.JavaParsingAtomicArrayQueueGenerator
* which can found in the jctools-build module. The original source file is MpmcArrayQueue.java.
*
* A Multi-Producer-Multi-Consumer queue based on a {@link org.jctools.queues.ConcurrentCircularArrayQueue}. This
* implies that any and all threads may call the offer/poll/peek methods and correctness is maintained.
* This implementation follows patterns documented on the package level for False Sharing protection.
* The algorithm for offer/poll is an adaptation of the one put forward by D. Vyukov (See here). The original
* algorithm uses an array of structs which should offer nice locality properties but is sadly not possible in
* Java (waiting on Value Types or similar). The alternative explored here utilizes 2 arrays, one for each
* field of the struct. There is a further alternative in the experimental project which uses iteration phase
* markers to achieve the same algo and is closer structurally to the original, but sadly does not perform as
* well as this implementation.
*
* Tradeoffs to keep in mind:
*
* - Padding for false sharing: counter fields and queue fields are all padded as well as either side of
* both arrays. We are trading memory to avoid false sharing(active and passive).
*
- 2 arrays instead of one: The algorithm requires an extra array of longs matching the size of the
* elements array. This is doubling/tripling the memory allocated for the buffer.
*
- Power of 2 capacity: Actual elements buffer (and sequence buffer) is the closest power of 2 larger or
* equal to the requested capacity.
*
*/
public class MpmcAtomicArrayQueue extends MpmcAtomicArrayQueueL3Pad {
public static final int MAX_LOOK_AHEAD_STEP = Integer.getInteger("jctools.mpmc.max.lookahead.step", 4096);
private final int lookAheadStep;
public MpmcAtomicArrayQueue(final int capacity) {
super(RangeUtil.checkGreaterThanOrEqual(capacity, 2, "capacity"));
lookAheadStep = Math.max(2, Math.min(capacity() / 4, MAX_LOOK_AHEAD_STEP));
}
@Override
public boolean offer(final E e) {
if (null == e) {
throw new NullPointerException();
}
final int mask = this.mask;
final long capacity = mask + 1;
final AtomicLongArray sBuffer = sequenceBuffer;
long pIndex;
int seqOffset;
long seq;
// start with bogus value, hope we don't need it
long cIndex = Long.MIN_VALUE;
do {
pIndex = lvProducerIndex();
seqOffset = calcCircularLongElementOffset(pIndex, mask);
seq = lvLongElement(sBuffer, seqOffset);
// consumer has not moved this seq forward, it's as last producer left
if (seq < pIndex) {
// Extra check required to ensure [Queue.offer == false iff queue is full]
if (// test against cached cIndex
pIndex - capacity >= cIndex && // test against latest cIndex
pIndex - capacity >= (cIndex = lvConsumerIndex())) {
return false;
} else {
// (+) hack to make it go around again without CAS
seq = pIndex + 1;
}
}
} while (// another producer has moved the sequence(or +)
seq > pIndex || // failed to increment
!casProducerIndex(pIndex, pIndex + 1));
// casProducerIndex ensures correct construction
spRefElement(buffer, calcCircularRefElementOffset(pIndex, mask), e);
// seq++;
soLongElement(sBuffer, seqOffset, pIndex + 1);
return true;
}
/**
* {@inheritDoc}
*
* Because return null indicates queue is empty we cannot simply rely on next element visibility for poll
* and must test producer index when next element is not visible.
*/
@Override
public E poll() {
// local load of field to avoid repeated loads after volatile reads
final AtomicLongArray sBuffer = sequenceBuffer;
final int mask = this.mask;
long cIndex;
long seq;
int seqOffset;
long expectedSeq;
// start with bogus value, hope we don't need it
long pIndex = -1;
do {
cIndex = lvConsumerIndex();
seqOffset = calcCircularLongElementOffset(cIndex, mask);
seq = lvLongElement(sBuffer, seqOffset);
expectedSeq = cIndex + 1;
if (seq < expectedSeq) {
// slot has not been moved by producer
if (// test against cached pIndex
cIndex >= pIndex && // update pIndex if we must
cIndex == (pIndex = lvProducerIndex())) {
// strict empty check, this ensures [Queue.poll() == null iff isEmpty()]
return null;
} else {
// trip another go around
seq = expectedSeq + 1;
}
}
} while (// another consumer beat us to it
seq > expectedSeq || // failed the CAS
!casConsumerIndex(cIndex, cIndex + 1));
final int offset = calcCircularRefElementOffset(cIndex, mask);
final E e = lpRefElement(buffer, offset);
spRefElement(buffer, offset, null);
// i.e. seq += capacity
soLongElement(sBuffer, seqOffset, cIndex + mask + 1);
return e;
}
@Override
public E peek() {
// local load of field to avoid repeated loads after volatile reads
final AtomicLongArray sBuffer = sequenceBuffer;
final int mask = this.mask;
long cIndex;
long seq;
int seqOffset;
long expectedSeq;
// start with bogus value, hope we don't need it
long pIndex = -1;
E e;
while (true) {
cIndex = lvConsumerIndex();
seqOffset = calcCircularLongElementOffset(cIndex, mask);
seq = lvLongElement(sBuffer, seqOffset);
expectedSeq = cIndex + 1;
if (seq < expectedSeq) {
// slot has not been moved by producer
if (// test against cached pIndex
cIndex >= pIndex && // update pIndex if we must
cIndex == (pIndex = lvProducerIndex())) {
// strict empty check, this ensures [Queue.poll() == null iff isEmpty()]
return null;
}
} else if (seq == expectedSeq) {
final int offset = calcCircularRefElementOffset(cIndex, mask);
e = lvRefElement(buffer, offset);
if (lvConsumerIndex() == cIndex)
return e;
}
}
}
@Override
public boolean relaxedOffer(E e) {
if (null == e) {
throw new NullPointerException();
}
final int mask = this.mask;
final AtomicLongArray sBuffer = sequenceBuffer;
long pIndex;
int seqOffset;
long seq;
do {
pIndex = lvProducerIndex();
seqOffset = calcCircularLongElementOffset(pIndex, mask);
seq = lvLongElement(sBuffer, seqOffset);
if (seq < pIndex) {
// slot not cleared by consumer yet
return false;
}
} while (// another producer has moved the sequence
seq > pIndex || // failed to increment
!casProducerIndex(pIndex, pIndex + 1));
// casProducerIndex ensures correct construction
spRefElement(buffer, calcCircularRefElementOffset(pIndex, mask), e);
soLongElement(sBuffer, seqOffset, pIndex + 1);
return true;
}
@Override
public E relaxedPoll() {
final AtomicLongArray sBuffer = sequenceBuffer;
final int mask = this.mask;
long cIndex;
int seqOffset;
long seq;
long expectedSeq;
do {
cIndex = lvConsumerIndex();
seqOffset = calcCircularLongElementOffset(cIndex, mask);
seq = lvLongElement(sBuffer, seqOffset);
expectedSeq = cIndex + 1;
if (seq < expectedSeq) {
return null;
}
} while (// another consumer beat us to it
seq > expectedSeq || // failed the CAS
!casConsumerIndex(cIndex, cIndex + 1));
final int offset = calcCircularRefElementOffset(cIndex, mask);
final E e = lpRefElement(buffer, offset);
spRefElement(buffer, offset, null);
soLongElement(sBuffer, seqOffset, cIndex + mask + 1);
return e;
}
@Override
public E relaxedPeek() {
// local load of field to avoid repeated loads after volatile reads
final AtomicLongArray sBuffer = sequenceBuffer;
final int mask = this.mask;
long cIndex;
long seq;
int seqOffset;
long expectedSeq;
E e;
do {
cIndex = lvConsumerIndex();
seqOffset = calcCircularLongElementOffset(cIndex, mask);
seq = lvLongElement(sBuffer, seqOffset);
expectedSeq = cIndex + 1;
if (seq < expectedSeq) {
return null;
} else if (seq == expectedSeq) {
final int offset = calcCircularRefElementOffset(cIndex, mask);
e = lvRefElement(buffer, offset);
if (lvConsumerIndex() == cIndex)
return e;
}
} while (true);
}
@Override
public int drain(Consumer c, int limit) {
if (null == c)
throw new IllegalArgumentException("c is null");
if (limit < 0)
throw new IllegalArgumentException("limit is negative: " + limit);
if (limit == 0)
return 0;
final AtomicLongArray sBuffer = sequenceBuffer;
final int mask = this.mask;
final AtomicReferenceArray buffer = this.buffer;
final int maxLookAheadStep = Math.min(this.lookAheadStep, limit);
int consumed = 0;
while (consumed < limit) {
final int remaining = limit - consumed;
final int lookAheadStep = Math.min(remaining, maxLookAheadStep);
final long cIndex = lvConsumerIndex();
final long lookAheadIndex = cIndex + lookAheadStep - 1;
final int lookAheadSeqOffset = calcCircularLongElementOffset(lookAheadIndex, mask);
final long lookAheadSeq = lvLongElement(sBuffer, lookAheadSeqOffset);
final long expectedLookAheadSeq = lookAheadIndex + 1;
if (lookAheadSeq == expectedLookAheadSeq && casConsumerIndex(cIndex, expectedLookAheadSeq)) {
for (int i = 0; i < lookAheadStep; i++) {
final long index = cIndex + i;
final int seqOffset = calcCircularLongElementOffset(index, mask);
final int offset = calcCircularRefElementOffset(index, mask);
final long expectedSeq = index + 1;
while (lvLongElement(sBuffer, seqOffset) != expectedSeq) {
}
final E e = lpRefElement(buffer, offset);
spRefElement(buffer, offset, null);
soLongElement(sBuffer, seqOffset, index + mask + 1);
c.accept(e);
}
consumed += lookAheadStep;
} else {
if (lookAheadSeq < expectedLookAheadSeq) {
if (notAvailable(cIndex, mask, sBuffer, cIndex + 1)) {
return consumed;
}
}
return consumed + drainOneByOne(c, remaining);
}
}
return limit;
}
private int drainOneByOne(Consumer c, int limit) {
final AtomicLongArray sBuffer = sequenceBuffer;
final int mask = this.mask;
final AtomicReferenceArray buffer = this.buffer;
long cIndex;
int seqOffset;
long seq;
long expectedSeq;
for (int i = 0; i < limit; i++) {
do {
cIndex = lvConsumerIndex();
seqOffset = calcCircularLongElementOffset(cIndex, mask);
seq = lvLongElement(sBuffer, seqOffset);
expectedSeq = cIndex + 1;
if (seq < expectedSeq) {
return i;
}
} while (// another consumer beat us to it
seq > expectedSeq || // failed the CAS
!casConsumerIndex(cIndex, cIndex + 1));
final int offset = calcCircularRefElementOffset(cIndex, mask);
final E e = lpRefElement(buffer, offset);
spRefElement(buffer, offset, null);
soLongElement(sBuffer, seqOffset, cIndex + mask + 1);
c.accept(e);
}
return limit;
}
@Override
public int fill(Supplier s, int limit) {
if (null == s)
throw new IllegalArgumentException("supplier is null");
if (limit < 0)
throw new IllegalArgumentException("limit is negative:" + limit);
if (limit == 0)
return 0;
final AtomicLongArray sBuffer = sequenceBuffer;
final int mask = this.mask;
final AtomicReferenceArray buffer = this.buffer;
final int maxLookAheadStep = Math.min(this.lookAheadStep, limit);
int produced = 0;
while (produced < limit) {
final int remaining = limit - produced;
final int lookAheadStep = Math.min(remaining, maxLookAheadStep);
final long pIndex = lvProducerIndex();
final long lookAheadIndex = pIndex + lookAheadStep - 1;
final int lookAheadSeqOffset = calcCircularLongElementOffset(lookAheadIndex, mask);
final long lookAheadSeq = lvLongElement(sBuffer, lookAheadSeqOffset);
final long expectedLookAheadSeq = lookAheadIndex;
if (lookAheadSeq == expectedLookAheadSeq && casProducerIndex(pIndex, expectedLookAheadSeq + 1)) {
for (int i = 0; i < lookAheadStep; i++) {
final long index = pIndex + i;
final int seqOffset = calcCircularLongElementOffset(index, mask);
final int offset = calcCircularRefElementOffset(index, mask);
while (lvLongElement(sBuffer, seqOffset) != index) {
}
// Ordered store ensures correct construction
soRefElement(buffer, offset, s.get());
soLongElement(sBuffer, seqOffset, index + 1);
}
produced += lookAheadStep;
} else {
if (lookAheadSeq < expectedLookAheadSeq) {
if (notAvailable(pIndex, mask, sBuffer, pIndex)) {
return produced;
}
}
return produced + fillOneByOne(s, remaining);
}
}
return limit;
}
private boolean notAvailable(long index, int mask, AtomicLongArray sBuffer, long expectedSeq) {
final int seqOffset = calcCircularLongElementOffset(index, mask);
final long seq = lvLongElement(sBuffer, seqOffset);
if (seq < expectedSeq) {
return true;
}
return false;
}
private int fillOneByOne(Supplier s, int limit) {
final AtomicLongArray sBuffer = sequenceBuffer;
final int mask = this.mask;
final AtomicReferenceArray buffer = this.buffer;
long pIndex;
int seqOffset;
long seq;
for (int i = 0; i < limit; i++) {
do {
pIndex = lvProducerIndex();
seqOffset = calcCircularLongElementOffset(pIndex, mask);
seq = lvLongElement(sBuffer, seqOffset);
if (seq < pIndex) {
// slot not cleared by consumer yet
return i;
}
} while (// another producer has moved the sequence
seq > pIndex || // failed to increment
!casProducerIndex(pIndex, pIndex + 1));
// Ordered store ensures correct construction
soRefElement(buffer, calcCircularRefElementOffset(pIndex, mask), s.get());
soLongElement(sBuffer, seqOffset, pIndex + 1);
}
return limit;
}
@Override
public int drain(Consumer c) {
return MessagePassingQueueUtil.drain(this, c);
}
@Override
public int fill(Supplier s) {
return MessagePassingQueueUtil.fillBounded(this, s);
}
@Override
public void drain(Consumer c, WaitStrategy w, ExitCondition exit) {
MessagePassingQueueUtil.drain(this, c, w, exit);
}
@Override
public void fill(Supplier s, WaitStrategy wait, ExitCondition exit) {
MessagePassingQueueUtil.fill(this, s, wait, exit);
}
}