All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jctools.queues.atomic.unpadded.MpmcAtomicUnpaddedArrayQueue Maven / Gradle / Ivy

There is a newer version: 1.52.1
Show newest version
/*
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.jctools.queues.atomic.unpadded;

import org.jctools.util.RangeUtil;
import java.util.concurrent.atomic.*;
import org.jctools.queues.*;
import static org.jctools.queues.atomic.AtomicQueueUtil.*;
import org.jctools.queues.atomic.AtomicReferenceArrayQueue;
import org.jctools.queues.atomic.SequencedAtomicReferenceArrayQueue;

/**
 * NOTE: This class was automatically generated by org.jctools.queues.atomic.unpadded.JavaParsingAtomicUnpaddedArrayQueueGenerator
 * which can found in the jctools-build module. The original source file is MpmcArrayQueue.java.
 */
abstract class MpmcAtomicUnpaddedArrayQueueL1Pad extends SequencedAtomicReferenceArrayQueue {

    MpmcAtomicUnpaddedArrayQueueL1Pad(int capacity) {
        super(capacity);
    }
}

/**
 * NOTE: This class was automatically generated by org.jctools.queues.atomic.unpadded.JavaParsingAtomicUnpaddedArrayQueueGenerator
 * which can found in the jctools-build module. The original source file is MpmcArrayQueue.java.
 */
abstract class MpmcAtomicUnpaddedArrayQueueProducerIndexField extends MpmcAtomicUnpaddedArrayQueueL1Pad {

    private static final AtomicLongFieldUpdater P_INDEX_UPDATER = AtomicLongFieldUpdater.newUpdater(MpmcAtomicUnpaddedArrayQueueProducerIndexField.class, "producerIndex");

    private volatile long producerIndex;

    MpmcAtomicUnpaddedArrayQueueProducerIndexField(int capacity) {
        super(capacity);
    }

    @Override
    public final long lvProducerIndex() {
        return producerIndex;
    }

    final boolean casProducerIndex(long expect, long newValue) {
        return P_INDEX_UPDATER.compareAndSet(this, expect, newValue);
    }
}

/**
 * NOTE: This class was automatically generated by org.jctools.queues.atomic.unpadded.JavaParsingAtomicUnpaddedArrayQueueGenerator
 * which can found in the jctools-build module. The original source file is MpmcArrayQueue.java.
 */
abstract class MpmcAtomicUnpaddedArrayQueueL2Pad extends MpmcAtomicUnpaddedArrayQueueProducerIndexField {

    MpmcAtomicUnpaddedArrayQueueL2Pad(int capacity) {
        super(capacity);
    }
}

/**
 * NOTE: This class was automatically generated by org.jctools.queues.atomic.unpadded.JavaParsingAtomicUnpaddedArrayQueueGenerator
 * which can found in the jctools-build module. The original source file is MpmcArrayQueue.java.
 */
abstract class MpmcAtomicUnpaddedArrayQueueConsumerIndexField extends MpmcAtomicUnpaddedArrayQueueL2Pad {

    private static final AtomicLongFieldUpdater C_INDEX_UPDATER = AtomicLongFieldUpdater.newUpdater(MpmcAtomicUnpaddedArrayQueueConsumerIndexField.class, "consumerIndex");

    private volatile long consumerIndex;

    MpmcAtomicUnpaddedArrayQueueConsumerIndexField(int capacity) {
        super(capacity);
    }

    @Override
    public final long lvConsumerIndex() {
        return consumerIndex;
    }

    final boolean casConsumerIndex(long expect, long newValue) {
        return C_INDEX_UPDATER.compareAndSet(this, expect, newValue);
    }
}

/**
 * NOTE: This class was automatically generated by org.jctools.queues.atomic.unpadded.JavaParsingAtomicUnpaddedArrayQueueGenerator
 * which can found in the jctools-build module. The original source file is MpmcArrayQueue.java.
 */
abstract class MpmcAtomicUnpaddedArrayQueueL3Pad extends MpmcAtomicUnpaddedArrayQueueConsumerIndexField {

    MpmcAtomicUnpaddedArrayQueueL3Pad(int capacity) {
        super(capacity);
    }
}

/**
 * NOTE: This class was automatically generated by org.jctools.queues.atomic.unpadded.JavaParsingAtomicUnpaddedArrayQueueGenerator
 * which can found in the jctools-build module. The original source file is MpmcArrayQueue.java.
 *
 * A Multi-Producer-Multi-Consumer queue based on a {@link org.jctools.queues.ConcurrentCircularArrayQueue}. This
 * implies that any and all threads may call the offer/poll/peek methods and correctness is maintained. 
* This implementation follows patterns documented on the package level for False Sharing protection.
* The algorithm for offer/poll is an adaptation of the one put forward by D. Vyukov (See here). The original * algorithm uses an array of structs which should offer nice locality properties but is sadly not possible in * Java (waiting on Value Types or similar). The alternative explored here utilizes 2 arrays, one for each * field of the struct. There is a further alternative in the experimental project which uses iteration phase * markers to achieve the same algo and is closer structurally to the original, but sadly does not perform as * well as this implementation.
*

* Tradeoffs to keep in mind: *

    *
  1. Padding for false sharing: counter fields and queue fields are all padded as well as either side of * both arrays. We are trading memory to avoid false sharing(active and passive). *
  2. 2 arrays instead of one: The algorithm requires an extra array of longs matching the size of the * elements array. This is doubling/tripling the memory allocated for the buffer. *
  3. Power of 2 capacity: Actual elements buffer (and sequence buffer) is the closest power of 2 larger or * equal to the requested capacity. *
*/ public class MpmcAtomicUnpaddedArrayQueue extends MpmcAtomicUnpaddedArrayQueueL3Pad { public static final int MAX_LOOK_AHEAD_STEP = Integer.getInteger("jctools.mpmc.max.lookahead.step", 4096); private final int lookAheadStep; public MpmcAtomicUnpaddedArrayQueue(final int capacity) { super(RangeUtil.checkGreaterThanOrEqual(capacity, 2, "capacity")); lookAheadStep = Math.max(2, Math.min(capacity() / 4, MAX_LOOK_AHEAD_STEP)); } @Override public boolean offer(final E e) { if (null == e) { throw new NullPointerException(); } final int mask = this.mask; final long capacity = mask + 1; final AtomicLongArray sBuffer = sequenceBuffer; long pIndex; int seqOffset; long seq; // start with bogus value, hope we don't need it long cIndex = Long.MIN_VALUE; do { pIndex = lvProducerIndex(); seqOffset = calcCircularLongElementOffset(pIndex, mask); seq = lvLongElement(sBuffer, seqOffset); // consumer has not moved this seq forward, it's as last producer left if (seq < pIndex) { // Extra check required to ensure [Queue.offer == false iff queue is full] if (// test against cached cIndex pIndex - capacity >= cIndex && // test against latest cIndex pIndex - capacity >= (cIndex = lvConsumerIndex())) { return false; } else { // (+) hack to make it go around again without CAS seq = pIndex + 1; } } } while (// another producer has moved the sequence(or +) seq > pIndex || // failed to increment !casProducerIndex(pIndex, pIndex + 1)); // casProducerIndex ensures correct construction spRefElement(buffer, calcCircularRefElementOffset(pIndex, mask), e); // seq++; soLongElement(sBuffer, seqOffset, pIndex + 1); return true; } /** * {@inheritDoc} *

* Because return null indicates queue is empty we cannot simply rely on next element visibility for poll * and must test producer index when next element is not visible. */ @Override public E poll() { // local load of field to avoid repeated loads after volatile reads final AtomicLongArray sBuffer = sequenceBuffer; final int mask = this.mask; long cIndex; long seq; int seqOffset; long expectedSeq; // start with bogus value, hope we don't need it long pIndex = -1; do { cIndex = lvConsumerIndex(); seqOffset = calcCircularLongElementOffset(cIndex, mask); seq = lvLongElement(sBuffer, seqOffset); expectedSeq = cIndex + 1; if (seq < expectedSeq) { // slot has not been moved by producer if (// test against cached pIndex cIndex >= pIndex && // update pIndex if we must cIndex == (pIndex = lvProducerIndex())) { // strict empty check, this ensures [Queue.poll() == null iff isEmpty()] return null; } else { // trip another go around seq = expectedSeq + 1; } } } while (// another consumer beat us to it seq > expectedSeq || // failed the CAS !casConsumerIndex(cIndex, cIndex + 1)); final int offset = calcCircularRefElementOffset(cIndex, mask); final E e = lpRefElement(buffer, offset); spRefElement(buffer, offset, null); // i.e. seq += capacity soLongElement(sBuffer, seqOffset, cIndex + mask + 1); return e; } @Override public E peek() { // local load of field to avoid repeated loads after volatile reads final AtomicLongArray sBuffer = sequenceBuffer; final int mask = this.mask; long cIndex; long seq; int seqOffset; long expectedSeq; // start with bogus value, hope we don't need it long pIndex = -1; E e; while (true) { cIndex = lvConsumerIndex(); seqOffset = calcCircularLongElementOffset(cIndex, mask); seq = lvLongElement(sBuffer, seqOffset); expectedSeq = cIndex + 1; if (seq < expectedSeq) { // slot has not been moved by producer if (// test against cached pIndex cIndex >= pIndex && // update pIndex if we must cIndex == (pIndex = lvProducerIndex())) { // strict empty check, this ensures [Queue.poll() == null iff isEmpty()] return null; } } else if (seq == expectedSeq) { final int offset = calcCircularRefElementOffset(cIndex, mask); e = lvRefElement(buffer, offset); if (lvConsumerIndex() == cIndex) return e; } } } @Override public boolean relaxedOffer(E e) { if (null == e) { throw new NullPointerException(); } final int mask = this.mask; final AtomicLongArray sBuffer = sequenceBuffer; long pIndex; int seqOffset; long seq; do { pIndex = lvProducerIndex(); seqOffset = calcCircularLongElementOffset(pIndex, mask); seq = lvLongElement(sBuffer, seqOffset); if (seq < pIndex) { // slot not cleared by consumer yet return false; } } while (// another producer has moved the sequence seq > pIndex || // failed to increment !casProducerIndex(pIndex, pIndex + 1)); // casProducerIndex ensures correct construction spRefElement(buffer, calcCircularRefElementOffset(pIndex, mask), e); soLongElement(sBuffer, seqOffset, pIndex + 1); return true; } @Override public E relaxedPoll() { final AtomicLongArray sBuffer = sequenceBuffer; final int mask = this.mask; long cIndex; int seqOffset; long seq; long expectedSeq; do { cIndex = lvConsumerIndex(); seqOffset = calcCircularLongElementOffset(cIndex, mask); seq = lvLongElement(sBuffer, seqOffset); expectedSeq = cIndex + 1; if (seq < expectedSeq) { return null; } } while (// another consumer beat us to it seq > expectedSeq || // failed the CAS !casConsumerIndex(cIndex, cIndex + 1)); final int offset = calcCircularRefElementOffset(cIndex, mask); final E e = lpRefElement(buffer, offset); spRefElement(buffer, offset, null); soLongElement(sBuffer, seqOffset, cIndex + mask + 1); return e; } @Override public E relaxedPeek() { // local load of field to avoid repeated loads after volatile reads final AtomicLongArray sBuffer = sequenceBuffer; final int mask = this.mask; long cIndex; long seq; int seqOffset; long expectedSeq; E e; do { cIndex = lvConsumerIndex(); seqOffset = calcCircularLongElementOffset(cIndex, mask); seq = lvLongElement(sBuffer, seqOffset); expectedSeq = cIndex + 1; if (seq < expectedSeq) { return null; } else if (seq == expectedSeq) { final int offset = calcCircularRefElementOffset(cIndex, mask); e = lvRefElement(buffer, offset); if (lvConsumerIndex() == cIndex) return e; } } while (true); } @Override public int drain(Consumer c, int limit) { if (null == c) throw new IllegalArgumentException("c is null"); if (limit < 0) throw new IllegalArgumentException("limit is negative: " + limit); if (limit == 0) return 0; final AtomicLongArray sBuffer = sequenceBuffer; final int mask = this.mask; final AtomicReferenceArray buffer = this.buffer; final int maxLookAheadStep = Math.min(this.lookAheadStep, limit); int consumed = 0; while (consumed < limit) { final int remaining = limit - consumed; final int lookAheadStep = Math.min(remaining, maxLookAheadStep); final long cIndex = lvConsumerIndex(); final long lookAheadIndex = cIndex + lookAheadStep - 1; final int lookAheadSeqOffset = calcCircularLongElementOffset(lookAheadIndex, mask); final long lookAheadSeq = lvLongElement(sBuffer, lookAheadSeqOffset); final long expectedLookAheadSeq = lookAheadIndex + 1; if (lookAheadSeq == expectedLookAheadSeq && casConsumerIndex(cIndex, expectedLookAheadSeq)) { for (int i = 0; i < lookAheadStep; i++) { final long index = cIndex + i; final int seqOffset = calcCircularLongElementOffset(index, mask); final int offset = calcCircularRefElementOffset(index, mask); final long expectedSeq = index + 1; while (lvLongElement(sBuffer, seqOffset) != expectedSeq) { } final E e = lpRefElement(buffer, offset); spRefElement(buffer, offset, null); soLongElement(sBuffer, seqOffset, index + mask + 1); c.accept(e); } consumed += lookAheadStep; } else { if (lookAheadSeq < expectedLookAheadSeq) { if (notAvailable(cIndex, mask, sBuffer, cIndex + 1)) { return consumed; } } return consumed + drainOneByOne(c, remaining); } } return limit; } private int drainOneByOne(Consumer c, int limit) { final AtomicLongArray sBuffer = sequenceBuffer; final int mask = this.mask; final AtomicReferenceArray buffer = this.buffer; long cIndex; int seqOffset; long seq; long expectedSeq; for (int i = 0; i < limit; i++) { do { cIndex = lvConsumerIndex(); seqOffset = calcCircularLongElementOffset(cIndex, mask); seq = lvLongElement(sBuffer, seqOffset); expectedSeq = cIndex + 1; if (seq < expectedSeq) { return i; } } while (// another consumer beat us to it seq > expectedSeq || // failed the CAS !casConsumerIndex(cIndex, cIndex + 1)); final int offset = calcCircularRefElementOffset(cIndex, mask); final E e = lpRefElement(buffer, offset); spRefElement(buffer, offset, null); soLongElement(sBuffer, seqOffset, cIndex + mask + 1); c.accept(e); } return limit; } @Override public int fill(Supplier s, int limit) { if (null == s) throw new IllegalArgumentException("supplier is null"); if (limit < 0) throw new IllegalArgumentException("limit is negative:" + limit); if (limit == 0) return 0; final AtomicLongArray sBuffer = sequenceBuffer; final int mask = this.mask; final AtomicReferenceArray buffer = this.buffer; final int maxLookAheadStep = Math.min(this.lookAheadStep, limit); int produced = 0; while (produced < limit) { final int remaining = limit - produced; final int lookAheadStep = Math.min(remaining, maxLookAheadStep); final long pIndex = lvProducerIndex(); final long lookAheadIndex = pIndex + lookAheadStep - 1; final int lookAheadSeqOffset = calcCircularLongElementOffset(lookAheadIndex, mask); final long lookAheadSeq = lvLongElement(sBuffer, lookAheadSeqOffset); final long expectedLookAheadSeq = lookAheadIndex; if (lookAheadSeq == expectedLookAheadSeq && casProducerIndex(pIndex, expectedLookAheadSeq + 1)) { for (int i = 0; i < lookAheadStep; i++) { final long index = pIndex + i; final int seqOffset = calcCircularLongElementOffset(index, mask); final int offset = calcCircularRefElementOffset(index, mask); while (lvLongElement(sBuffer, seqOffset) != index) { } // Ordered store ensures correct construction soRefElement(buffer, offset, s.get()); soLongElement(sBuffer, seqOffset, index + 1); } produced += lookAheadStep; } else { if (lookAheadSeq < expectedLookAheadSeq) { if (notAvailable(pIndex, mask, sBuffer, pIndex)) { return produced; } } return produced + fillOneByOne(s, remaining); } } return limit; } private boolean notAvailable(long index, int mask, AtomicLongArray sBuffer, long expectedSeq) { final int seqOffset = calcCircularLongElementOffset(index, mask); final long seq = lvLongElement(sBuffer, seqOffset); if (seq < expectedSeq) { return true; } return false; } private int fillOneByOne(Supplier s, int limit) { final AtomicLongArray sBuffer = sequenceBuffer; final int mask = this.mask; final AtomicReferenceArray buffer = this.buffer; long pIndex; int seqOffset; long seq; for (int i = 0; i < limit; i++) { do { pIndex = lvProducerIndex(); seqOffset = calcCircularLongElementOffset(pIndex, mask); seq = lvLongElement(sBuffer, seqOffset); if (seq < pIndex) { // slot not cleared by consumer yet return i; } } while (// another producer has moved the sequence seq > pIndex || // failed to increment !casProducerIndex(pIndex, pIndex + 1)); // Ordered store ensures correct construction soRefElement(buffer, calcCircularRefElementOffset(pIndex, mask), s.get()); soLongElement(sBuffer, seqOffset, pIndex + 1); } return limit; } @Override public int drain(Consumer c) { return MessagePassingQueueUtil.drain(this, c); } @Override public int fill(Supplier s) { return MessagePassingQueueUtil.fillBounded(this, s); } @Override public void drain(Consumer c, WaitStrategy w, ExitCondition exit) { MessagePassingQueueUtil.drain(this, c, w, exit); } @Override public void fill(Supplier s, WaitStrategy wait, ExitCondition exit) { MessagePassingQueueUtil.fill(this, s, wait, exit); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy