All Downloads are FREE. Search and download functionalities are using the official Maven repository.

co.elastic.clients.elasticsearch.ml.Anomaly Maven / Gradle / Ivy

There is a newer version: 8.15.1
Show newest version
/*
 * Licensed to Elasticsearch B.V. under one or more contributor
 * license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright
 * ownership. Elasticsearch B.V. licenses this file to you under
 * the Apache License, Version 2.0 (the "License"); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package co.elastic.clients.elasticsearch.ml;

import co.elastic.clients.json.JsonpDeserializable;
import co.elastic.clients.json.JsonpDeserializer;
import co.elastic.clients.json.JsonpMapper;
import co.elastic.clients.json.JsonpSerializable;
import co.elastic.clients.json.JsonpUtils;
import co.elastic.clients.json.ObjectBuilderDeserializer;
import co.elastic.clients.json.ObjectDeserializer;
import co.elastic.clients.util.ApiTypeHelper;
import co.elastic.clients.util.ObjectBuilder;
import co.elastic.clients.util.WithJsonObjectBuilderBase;
import jakarta.json.stream.JsonGenerator;
import java.lang.Boolean;
import java.lang.Double;
import java.lang.Integer;
import java.lang.Long;
import java.lang.String;
import java.util.List;
import java.util.Objects;
import java.util.function.Function;
import javax.annotation.Nullable;

//----------------------------------------------------------------
//       THIS CODE IS GENERATED. MANUAL EDITS WILL BE LOST.
//----------------------------------------------------------------
//
// This code is generated from the Elasticsearch API specification
// at https://github.com/elastic/elasticsearch-specification
//
// Manual updates to this file will be lost when the code is
// re-generated.
//
// If you find a property that is missing or wrongly typed, please
// open an issue or a PR on the API specification repository.
//
//----------------------------------------------------------------

// typedef: ml._types.Anomaly

/**
 *
 * @see API
 *      specification
 */
@JsonpDeserializable
public class Anomaly implements JsonpSerializable {
	private final List actual;

	@Nullable
	private final AnomalyExplanation anomalyScoreExplanation;

	private final long bucketSpan;

	@Nullable
	private final String byFieldName;

	@Nullable
	private final String byFieldValue;

	private final List causes;

	private final int detectorIndex;

	@Nullable
	private final String fieldName;

	@Nullable
	private final String function;

	@Nullable
	private final String functionDescription;

	@Nullable
	private final GeoResults geoResults;

	private final List influencers;

	private final double initialRecordScore;

	private final boolean isInterim;

	private final String jobId;

	@Nullable
	private final String overFieldName;

	@Nullable
	private final String overFieldValue;

	@Nullable
	private final String partitionFieldName;

	@Nullable
	private final String partitionFieldValue;

	private final double probability;

	private final double recordScore;

	private final String resultType;

	private final long timestamp;

	private final List typical;

	// ---------------------------------------------------------------------------------------------

	private Anomaly(Builder builder) {

		this.actual = ApiTypeHelper.unmodifiable(builder.actual);
		this.anomalyScoreExplanation = builder.anomalyScoreExplanation;
		this.bucketSpan = ApiTypeHelper.requireNonNull(builder.bucketSpan, this, "bucketSpan");
		this.byFieldName = builder.byFieldName;
		this.byFieldValue = builder.byFieldValue;
		this.causes = ApiTypeHelper.unmodifiable(builder.causes);
		this.detectorIndex = ApiTypeHelper.requireNonNull(builder.detectorIndex, this, "detectorIndex");
		this.fieldName = builder.fieldName;
		this.function = builder.function;
		this.functionDescription = builder.functionDescription;
		this.geoResults = builder.geoResults;
		this.influencers = ApiTypeHelper.unmodifiable(builder.influencers);
		this.initialRecordScore = ApiTypeHelper.requireNonNull(builder.initialRecordScore, this, "initialRecordScore");
		this.isInterim = ApiTypeHelper.requireNonNull(builder.isInterim, this, "isInterim");
		this.jobId = ApiTypeHelper.requireNonNull(builder.jobId, this, "jobId");
		this.overFieldName = builder.overFieldName;
		this.overFieldValue = builder.overFieldValue;
		this.partitionFieldName = builder.partitionFieldName;
		this.partitionFieldValue = builder.partitionFieldValue;
		this.probability = ApiTypeHelper.requireNonNull(builder.probability, this, "probability");
		this.recordScore = ApiTypeHelper.requireNonNull(builder.recordScore, this, "recordScore");
		this.resultType = ApiTypeHelper.requireNonNull(builder.resultType, this, "resultType");
		this.timestamp = ApiTypeHelper.requireNonNull(builder.timestamp, this, "timestamp");
		this.typical = ApiTypeHelper.unmodifiable(builder.typical);

	}

	public static Anomaly of(Function> fn) {
		return fn.apply(new Builder()).build();
	}

	/**
	 * The actual value for the bucket.
	 * 

* API name: {@code actual} */ public final List actual() { return this.actual; } /** * Information about the factors impacting the initial anomaly score. *

* API name: {@code anomaly_score_explanation} */ @Nullable public final AnomalyExplanation anomalyScoreExplanation() { return this.anomalyScoreExplanation; } /** * Required - The length of the bucket in seconds. This value matches the * bucket_span that is specified in the job. *

* API name: {@code bucket_span} */ public final long bucketSpan() { return this.bucketSpan; } /** * The field used to split the data. In particular, this property is used for * analyzing the splits with respect to their own history. It is used for * finding unusual values in the context of the split. *

* API name: {@code by_field_name} */ @Nullable public final String byFieldName() { return this.byFieldName; } /** * The value of by_field_name. *

* API name: {@code by_field_value} */ @Nullable public final String byFieldValue() { return this.byFieldValue; } /** * For population analysis, an over field must be specified in the detector. * This property contains an array of anomaly records that are the causes for * the anomaly that has been identified for the over field. This sub-resource * contains the most anomalous records for the over_field_name. For * scalability reasons, a maximum of the 10 most significant causes of the * anomaly are returned. As part of the core analytical modeling, these * low-level anomaly records are aggregated for their parent over field record. * The causes resource contains similar elements to the record * resource, namely actual, typical, * geo_results.actual_point, * geo_results.typical_point, *_field_name and * *_field_value. Probability and scores are not applicable to * causes. *

* API name: {@code causes} */ public final List causes() { return this.causes; } /** * Required - A unique identifier for the detector. *

* API name: {@code detector_index} */ public final int detectorIndex() { return this.detectorIndex; } /** * Certain functions require a field to operate on, for example, * sum(). For those functions, this value is the name of the field * to be analyzed. *

* API name: {@code field_name} */ @Nullable public final String fieldName() { return this.fieldName; } /** * The function in which the anomaly occurs, as specified in the detector * configuration. For example, max. *

* API name: {@code function} */ @Nullable public final String function() { return this.function; } /** * The description of the function in which the anomaly occurs, as specified in * the detector configuration. *

* API name: {@code function_description} */ @Nullable public final String functionDescription() { return this.functionDescription; } /** * If the detector function is lat_long, this object contains comma * delimited strings for the latitude and longitude of the actual and typical * values. *

* API name: {@code geo_results} */ @Nullable public final GeoResults geoResults() { return this.geoResults; } /** * If influencers were specified in the detector configuration, this array * contains influencers that contributed to or were to blame for an anomaly. *

* API name: {@code influencers} */ public final List influencers() { return this.influencers; } /** * Required - A normalized score between 0-100, which is based on the * probability of the anomalousness of this record. This is the initial value * that was calculated at the time the bucket was processed. *

* API name: {@code initial_record_score} */ public final double initialRecordScore() { return this.initialRecordScore; } /** * Required - If true, this is an interim result. In other words, the results * are calculated based on partial input data. *

* API name: {@code is_interim} */ public final boolean isInterim() { return this.isInterim; } /** * Required - Identifier for the anomaly detection job. *

* API name: {@code job_id} */ public final String jobId() { return this.jobId; } /** * The field used to split the data. In particular, this property is used for * analyzing the splits with respect to the history of all splits. It is used * for finding unusual values in the population of all splits. *

* API name: {@code over_field_name} */ @Nullable public final String overFieldName() { return this.overFieldName; } /** * The value of over_field_name. *

* API name: {@code over_field_value} */ @Nullable public final String overFieldValue() { return this.overFieldValue; } /** * The field used to segment the analysis. When you use this property, you have * completely independent baselines for each value of this field. *

* API name: {@code partition_field_name} */ @Nullable public final String partitionFieldName() { return this.partitionFieldName; } /** * The value of partition_field_name. *

* API name: {@code partition_field_value} */ @Nullable public final String partitionFieldValue() { return this.partitionFieldValue; } /** * Required - The probability of the individual anomaly occurring, in the range * 0 to 1. For example, 0.0000772031. This value can be held to a * high precision of over 300 decimal places, so the record_score * is provided as a human-readable and friendly interpretation of this. *

* API name: {@code probability} */ public final double probability() { return this.probability; } /** * Required - A normalized score between 0-100, which is based on the * probability of the anomalousness of this record. Unlike * initial_record_score, this value will be updated by a * re-normalization process as new data is analyzed. *

* API name: {@code record_score} */ public final double recordScore() { return this.recordScore; } /** * Required - Internal. This is always set to record. *

* API name: {@code result_type} */ public final String resultType() { return this.resultType; } /** * Required - The start time of the bucket for which these results were * calculated. *

* API name: {@code timestamp} */ public final long timestamp() { return this.timestamp; } /** * The typical value for the bucket, according to analytical modeling. *

* API name: {@code typical} */ public final List typical() { return this.typical; } /** * Serialize this object to JSON. */ public void serialize(JsonGenerator generator, JsonpMapper mapper) { generator.writeStartObject(); serializeInternal(generator, mapper); generator.writeEnd(); } protected void serializeInternal(JsonGenerator generator, JsonpMapper mapper) { if (ApiTypeHelper.isDefined(this.actual)) { generator.writeKey("actual"); generator.writeStartArray(); for (Double item0 : this.actual) { generator.write(item0); } generator.writeEnd(); } if (this.anomalyScoreExplanation != null) { generator.writeKey("anomaly_score_explanation"); this.anomalyScoreExplanation.serialize(generator, mapper); } generator.writeKey("bucket_span"); generator.write(this.bucketSpan); if (this.byFieldName != null) { generator.writeKey("by_field_name"); generator.write(this.byFieldName); } if (this.byFieldValue != null) { generator.writeKey("by_field_value"); generator.write(this.byFieldValue); } if (ApiTypeHelper.isDefined(this.causes)) { generator.writeKey("causes"); generator.writeStartArray(); for (AnomalyCause item0 : this.causes) { item0.serialize(generator, mapper); } generator.writeEnd(); } generator.writeKey("detector_index"); generator.write(this.detectorIndex); if (this.fieldName != null) { generator.writeKey("field_name"); generator.write(this.fieldName); } if (this.function != null) { generator.writeKey("function"); generator.write(this.function); } if (this.functionDescription != null) { generator.writeKey("function_description"); generator.write(this.functionDescription); } if (this.geoResults != null) { generator.writeKey("geo_results"); this.geoResults.serialize(generator, mapper); } if (ApiTypeHelper.isDefined(this.influencers)) { generator.writeKey("influencers"); generator.writeStartArray(); for (Influence item0 : this.influencers) { item0.serialize(generator, mapper); } generator.writeEnd(); } generator.writeKey("initial_record_score"); generator.write(this.initialRecordScore); generator.writeKey("is_interim"); generator.write(this.isInterim); generator.writeKey("job_id"); generator.write(this.jobId); if (this.overFieldName != null) { generator.writeKey("over_field_name"); generator.write(this.overFieldName); } if (this.overFieldValue != null) { generator.writeKey("over_field_value"); generator.write(this.overFieldValue); } if (this.partitionFieldName != null) { generator.writeKey("partition_field_name"); generator.write(this.partitionFieldName); } if (this.partitionFieldValue != null) { generator.writeKey("partition_field_value"); generator.write(this.partitionFieldValue); } generator.writeKey("probability"); generator.write(this.probability); generator.writeKey("record_score"); generator.write(this.recordScore); generator.writeKey("result_type"); generator.write(this.resultType); generator.writeKey("timestamp"); generator.write(this.timestamp); if (ApiTypeHelper.isDefined(this.typical)) { generator.writeKey("typical"); generator.writeStartArray(); for (Double item0 : this.typical) { generator.write(item0); } generator.writeEnd(); } } @Override public String toString() { return JsonpUtils.toString(this); } // --------------------------------------------------------------------------------------------- /** * Builder for {@link Anomaly}. */ public static class Builder extends WithJsonObjectBuilderBase implements ObjectBuilder { @Nullable private List actual; @Nullable private AnomalyExplanation anomalyScoreExplanation; private Long bucketSpan; @Nullable private String byFieldName; @Nullable private String byFieldValue; @Nullable private List causes; private Integer detectorIndex; @Nullable private String fieldName; @Nullable private String function; @Nullable private String functionDescription; @Nullable private GeoResults geoResults; @Nullable private List influencers; private Double initialRecordScore; private Boolean isInterim; private String jobId; @Nullable private String overFieldName; @Nullable private String overFieldValue; @Nullable private String partitionFieldName; @Nullable private String partitionFieldValue; private Double probability; private Double recordScore; private String resultType; private Long timestamp; @Nullable private List typical; /** * The actual value for the bucket. *

* API name: {@code actual} *

* Adds all elements of list to actual. */ public final Builder actual(List list) { this.actual = _listAddAll(this.actual, list); return this; } /** * The actual value for the bucket. *

* API name: {@code actual} *

* Adds one or more values to actual. */ public final Builder actual(Double value, Double... values) { this.actual = _listAdd(this.actual, value, values); return this; } /** * Information about the factors impacting the initial anomaly score. *

* API name: {@code anomaly_score_explanation} */ public final Builder anomalyScoreExplanation(@Nullable AnomalyExplanation value) { this.anomalyScoreExplanation = value; return this; } /** * Information about the factors impacting the initial anomaly score. *

* API name: {@code anomaly_score_explanation} */ public final Builder anomalyScoreExplanation( Function> fn) { return this.anomalyScoreExplanation(fn.apply(new AnomalyExplanation.Builder()).build()); } /** * Required - The length of the bucket in seconds. This value matches the * bucket_span that is specified in the job. *

* API name: {@code bucket_span} */ public final Builder bucketSpan(long value) { this.bucketSpan = value; return this; } /** * The field used to split the data. In particular, this property is used for * analyzing the splits with respect to their own history. It is used for * finding unusual values in the context of the split. *

* API name: {@code by_field_name} */ public final Builder byFieldName(@Nullable String value) { this.byFieldName = value; return this; } /** * The value of by_field_name. *

* API name: {@code by_field_value} */ public final Builder byFieldValue(@Nullable String value) { this.byFieldValue = value; return this; } /** * For population analysis, an over field must be specified in the detector. * This property contains an array of anomaly records that are the causes for * the anomaly that has been identified for the over field. This sub-resource * contains the most anomalous records for the over_field_name. For * scalability reasons, a maximum of the 10 most significant causes of the * anomaly are returned. As part of the core analytical modeling, these * low-level anomaly records are aggregated for their parent over field record. * The causes resource contains similar elements to the record * resource, namely actual, typical, * geo_results.actual_point, * geo_results.typical_point, *_field_name and * *_field_value. Probability and scores are not applicable to * causes. *

* API name: {@code causes} *

* Adds all elements of list to causes. */ public final Builder causes(List list) { this.causes = _listAddAll(this.causes, list); return this; } /** * For population analysis, an over field must be specified in the detector. * This property contains an array of anomaly records that are the causes for * the anomaly that has been identified for the over field. This sub-resource * contains the most anomalous records for the over_field_name. For * scalability reasons, a maximum of the 10 most significant causes of the * anomaly are returned. As part of the core analytical modeling, these * low-level anomaly records are aggregated for their parent over field record. * The causes resource contains similar elements to the record * resource, namely actual, typical, * geo_results.actual_point, * geo_results.typical_point, *_field_name and * *_field_value. Probability and scores are not applicable to * causes. *

* API name: {@code causes} *

* Adds one or more values to causes. */ public final Builder causes(AnomalyCause value, AnomalyCause... values) { this.causes = _listAdd(this.causes, value, values); return this; } /** * For population analysis, an over field must be specified in the detector. * This property contains an array of anomaly records that are the causes for * the anomaly that has been identified for the over field. This sub-resource * contains the most anomalous records for the over_field_name. For * scalability reasons, a maximum of the 10 most significant causes of the * anomaly are returned. As part of the core analytical modeling, these * low-level anomaly records are aggregated for their parent over field record. * The causes resource contains similar elements to the record * resource, namely actual, typical, * geo_results.actual_point, * geo_results.typical_point, *_field_name and * *_field_value. Probability and scores are not applicable to * causes. *

* API name: {@code causes} *

* Adds a value to causes using a builder lambda. */ public final Builder causes(Function> fn) { return causes(fn.apply(new AnomalyCause.Builder()).build()); } /** * Required - A unique identifier for the detector. *

* API name: {@code detector_index} */ public final Builder detectorIndex(int value) { this.detectorIndex = value; return this; } /** * Certain functions require a field to operate on, for example, * sum(). For those functions, this value is the name of the field * to be analyzed. *

* API name: {@code field_name} */ public final Builder fieldName(@Nullable String value) { this.fieldName = value; return this; } /** * The function in which the anomaly occurs, as specified in the detector * configuration. For example, max. *

* API name: {@code function} */ public final Builder function(@Nullable String value) { this.function = value; return this; } /** * The description of the function in which the anomaly occurs, as specified in * the detector configuration. *

* API name: {@code function_description} */ public final Builder functionDescription(@Nullable String value) { this.functionDescription = value; return this; } /** * If the detector function is lat_long, this object contains comma * delimited strings for the latitude and longitude of the actual and typical * values. *

* API name: {@code geo_results} */ public final Builder geoResults(@Nullable GeoResults value) { this.geoResults = value; return this; } /** * If the detector function is lat_long, this object contains comma * delimited strings for the latitude and longitude of the actual and typical * values. *

* API name: {@code geo_results} */ public final Builder geoResults(Function> fn) { return this.geoResults(fn.apply(new GeoResults.Builder()).build()); } /** * If influencers were specified in the detector configuration, this array * contains influencers that contributed to or were to blame for an anomaly. *

* API name: {@code influencers} *

* Adds all elements of list to influencers. */ public final Builder influencers(List list) { this.influencers = _listAddAll(this.influencers, list); return this; } /** * If influencers were specified in the detector configuration, this array * contains influencers that contributed to or were to blame for an anomaly. *

* API name: {@code influencers} *

* Adds one or more values to influencers. */ public final Builder influencers(Influence value, Influence... values) { this.influencers = _listAdd(this.influencers, value, values); return this; } /** * If influencers were specified in the detector configuration, this array * contains influencers that contributed to or were to blame for an anomaly. *

* API name: {@code influencers} *

* Adds a value to influencers using a builder lambda. */ public final Builder influencers(Function> fn) { return influencers(fn.apply(new Influence.Builder()).build()); } /** * Required - A normalized score between 0-100, which is based on the * probability of the anomalousness of this record. This is the initial value * that was calculated at the time the bucket was processed. *

* API name: {@code initial_record_score} */ public final Builder initialRecordScore(double value) { this.initialRecordScore = value; return this; } /** * Required - If true, this is an interim result. In other words, the results * are calculated based on partial input data. *

* API name: {@code is_interim} */ public final Builder isInterim(boolean value) { this.isInterim = value; return this; } /** * Required - Identifier for the anomaly detection job. *

* API name: {@code job_id} */ public final Builder jobId(String value) { this.jobId = value; return this; } /** * The field used to split the data. In particular, this property is used for * analyzing the splits with respect to the history of all splits. It is used * for finding unusual values in the population of all splits. *

* API name: {@code over_field_name} */ public final Builder overFieldName(@Nullable String value) { this.overFieldName = value; return this; } /** * The value of over_field_name. *

* API name: {@code over_field_value} */ public final Builder overFieldValue(@Nullable String value) { this.overFieldValue = value; return this; } /** * The field used to segment the analysis. When you use this property, you have * completely independent baselines for each value of this field. *

* API name: {@code partition_field_name} */ public final Builder partitionFieldName(@Nullable String value) { this.partitionFieldName = value; return this; } /** * The value of partition_field_name. *

* API name: {@code partition_field_value} */ public final Builder partitionFieldValue(@Nullable String value) { this.partitionFieldValue = value; return this; } /** * Required - The probability of the individual anomaly occurring, in the range * 0 to 1. For example, 0.0000772031. This value can be held to a * high precision of over 300 decimal places, so the record_score * is provided as a human-readable and friendly interpretation of this. *

* API name: {@code probability} */ public final Builder probability(double value) { this.probability = value; return this; } /** * Required - A normalized score between 0-100, which is based on the * probability of the anomalousness of this record. Unlike * initial_record_score, this value will be updated by a * re-normalization process as new data is analyzed. *

* API name: {@code record_score} */ public final Builder recordScore(double value) { this.recordScore = value; return this; } /** * Required - Internal. This is always set to record. *

* API name: {@code result_type} */ public final Builder resultType(String value) { this.resultType = value; return this; } /** * Required - The start time of the bucket for which these results were * calculated. *

* API name: {@code timestamp} */ public final Builder timestamp(long value) { this.timestamp = value; return this; } /** * The typical value for the bucket, according to analytical modeling. *

* API name: {@code typical} *

* Adds all elements of list to typical. */ public final Builder typical(List list) { this.typical = _listAddAll(this.typical, list); return this; } /** * The typical value for the bucket, according to analytical modeling. *

* API name: {@code typical} *

* Adds one or more values to typical. */ public final Builder typical(Double value, Double... values) { this.typical = _listAdd(this.typical, value, values); return this; } @Override protected Builder self() { return this; } /** * Builds a {@link Anomaly}. * * @throws NullPointerException * if some of the required fields are null. */ public Anomaly build() { _checkSingleUse(); return new Anomaly(this); } } // --------------------------------------------------------------------------------------------- /** * Json deserializer for {@link Anomaly} */ public static final JsonpDeserializer _DESERIALIZER = ObjectBuilderDeserializer.lazy(Builder::new, Anomaly::setupAnomalyDeserializer); protected static void setupAnomalyDeserializer(ObjectDeserializer op) { op.add(Builder::actual, JsonpDeserializer.arrayDeserializer(JsonpDeserializer.doubleDeserializer()), "actual"); op.add(Builder::anomalyScoreExplanation, AnomalyExplanation._DESERIALIZER, "anomaly_score_explanation"); op.add(Builder::bucketSpan, JsonpDeserializer.longDeserializer(), "bucket_span"); op.add(Builder::byFieldName, JsonpDeserializer.stringDeserializer(), "by_field_name"); op.add(Builder::byFieldValue, JsonpDeserializer.stringDeserializer(), "by_field_value"); op.add(Builder::causes, JsonpDeserializer.arrayDeserializer(AnomalyCause._DESERIALIZER), "causes"); op.add(Builder::detectorIndex, JsonpDeserializer.integerDeserializer(), "detector_index"); op.add(Builder::fieldName, JsonpDeserializer.stringDeserializer(), "field_name"); op.add(Builder::function, JsonpDeserializer.stringDeserializer(), "function"); op.add(Builder::functionDescription, JsonpDeserializer.stringDeserializer(), "function_description"); op.add(Builder::geoResults, GeoResults._DESERIALIZER, "geo_results"); op.add(Builder::influencers, JsonpDeserializer.arrayDeserializer(Influence._DESERIALIZER), "influencers"); op.add(Builder::initialRecordScore, JsonpDeserializer.doubleDeserializer(), "initial_record_score"); op.add(Builder::isInterim, JsonpDeserializer.booleanDeserializer(), "is_interim"); op.add(Builder::jobId, JsonpDeserializer.stringDeserializer(), "job_id"); op.add(Builder::overFieldName, JsonpDeserializer.stringDeserializer(), "over_field_name"); op.add(Builder::overFieldValue, JsonpDeserializer.stringDeserializer(), "over_field_value"); op.add(Builder::partitionFieldName, JsonpDeserializer.stringDeserializer(), "partition_field_name"); op.add(Builder::partitionFieldValue, JsonpDeserializer.stringDeserializer(), "partition_field_value"); op.add(Builder::probability, JsonpDeserializer.doubleDeserializer(), "probability"); op.add(Builder::recordScore, JsonpDeserializer.doubleDeserializer(), "record_score"); op.add(Builder::resultType, JsonpDeserializer.stringDeserializer(), "result_type"); op.add(Builder::timestamp, JsonpDeserializer.longDeserializer(), "timestamp"); op.add(Builder::typical, JsonpDeserializer.arrayDeserializer(JsonpDeserializer.doubleDeserializer()), "typical"); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy