All Downloads are FREE. Search and download functionalities are using the official Maven repository.

co.elastic.clients.elasticsearch.ml.DataframeEvaluationRegression Maven / Gradle / Ivy

There is a newer version: 8.17.0
Show newest version
/*
 * Licensed to Elasticsearch B.V. under one or more contributor
 * license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright
 * ownership. Elasticsearch B.V. licenses this file to you under
 * the Apache License, Version 2.0 (the "License"); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package co.elastic.clients.elasticsearch.ml;

import co.elastic.clients.json.JsonpDeserializable;
import co.elastic.clients.json.JsonpDeserializer;
import co.elastic.clients.json.JsonpMapper;
import co.elastic.clients.json.JsonpSerializable;
import co.elastic.clients.json.JsonpUtils;
import co.elastic.clients.json.ObjectBuilderDeserializer;
import co.elastic.clients.json.ObjectDeserializer;
import co.elastic.clients.util.ApiTypeHelper;
import co.elastic.clients.util.ObjectBuilder;
import co.elastic.clients.util.WithJsonObjectBuilderBase;
import jakarta.json.stream.JsonGenerator;
import java.lang.String;
import java.util.Objects;
import java.util.function.Function;
import javax.annotation.Nullable;

//----------------------------------------------------------------
//       THIS CODE IS GENERATED. MANUAL EDITS WILL BE LOST.
//----------------------------------------------------------------
//
// This code is generated from the Elasticsearch API specification
// at https://github.com/elastic/elasticsearch-specification
//
// Manual updates to this file will be lost when the code is
// re-generated.
//
// If you find a property that is missing or wrongly typed, please
// open an issue or a PR on the API specification repository.
//
//----------------------------------------------------------------

// typedef: ml._types.DataframeEvaluationRegression

/**
 *
 * @see API
 *      specification
 */
@JsonpDeserializable
public class DataframeEvaluationRegression implements DataframeEvaluationVariant, JsonpSerializable {
	private final String actualField;

	private final String predictedField;

	@Nullable
	private final DataframeEvaluationRegressionMetrics metrics;

	// ---------------------------------------------------------------------------------------------

	private DataframeEvaluationRegression(Builder builder) {

		this.actualField = ApiTypeHelper.requireNonNull(builder.actualField, this, "actualField");
		this.predictedField = ApiTypeHelper.requireNonNull(builder.predictedField, this, "predictedField");
		this.metrics = builder.metrics;

	}

	public static DataframeEvaluationRegression of(Function> fn) {
		return fn.apply(new Builder()).build();
	}

	/**
	 * DataframeEvaluation variant kind.
	 */
	@Override
	public DataframeEvaluation.Kind _dataframeEvaluationKind() {
		return DataframeEvaluation.Kind.Regression;
	}

	/**
	 * Required - The field of the index which contains the ground truth. The data
	 * type of this field must be numerical.
	 * 

* API name: {@code actual_field} */ public final String actualField() { return this.actualField; } /** * Required - The field in the index that contains the predicted value, in other * words the results of the regression analysis. *

* API name: {@code predicted_field} */ public final String predictedField() { return this.predictedField; } /** * Specifies the metrics that are used for the evaluation. For more information * on mse, msle, and huber, consult the Jupyter notebook on regression loss * functions. *

* API name: {@code metrics} */ @Nullable public final DataframeEvaluationRegressionMetrics metrics() { return this.metrics; } /** * Serialize this object to JSON. */ public void serialize(JsonGenerator generator, JsonpMapper mapper) { generator.writeStartObject(); serializeInternal(generator, mapper); generator.writeEnd(); } protected void serializeInternal(JsonGenerator generator, JsonpMapper mapper) { generator.writeKey("actual_field"); generator.write(this.actualField); generator.writeKey("predicted_field"); generator.write(this.predictedField); if (this.metrics != null) { generator.writeKey("metrics"); this.metrics.serialize(generator, mapper); } } @Override public String toString() { return JsonpUtils.toString(this); } // --------------------------------------------------------------------------------------------- /** * Builder for {@link DataframeEvaluationRegression}. */ public static class Builder extends WithJsonObjectBuilderBase implements ObjectBuilder { private String actualField; private String predictedField; @Nullable private DataframeEvaluationRegressionMetrics metrics; /** * Required - The field of the index which contains the ground truth. The data * type of this field must be numerical. *

* API name: {@code actual_field} */ public final Builder actualField(String value) { this.actualField = value; return this; } /** * Required - The field in the index that contains the predicted value, in other * words the results of the regression analysis. *

* API name: {@code predicted_field} */ public final Builder predictedField(String value) { this.predictedField = value; return this; } /** * Specifies the metrics that are used for the evaluation. For more information * on mse, msle, and huber, consult the Jupyter notebook on regression loss * functions. *

* API name: {@code metrics} */ public final Builder metrics(@Nullable DataframeEvaluationRegressionMetrics value) { this.metrics = value; return this; } /** * Specifies the metrics that are used for the evaluation. For more information * on mse, msle, and huber, consult the Jupyter notebook on regression loss * functions. *

* API name: {@code metrics} */ public final Builder metrics( Function> fn) { return this.metrics(fn.apply(new DataframeEvaluationRegressionMetrics.Builder()).build()); } @Override protected Builder self() { return this; } /** * Builds a {@link DataframeEvaluationRegression}. * * @throws NullPointerException * if some of the required fields are null. */ public DataframeEvaluationRegression build() { _checkSingleUse(); return new DataframeEvaluationRegression(this); } } // --------------------------------------------------------------------------------------------- /** * Json deserializer for {@link DataframeEvaluationRegression} */ public static final JsonpDeserializer _DESERIALIZER = ObjectBuilderDeserializer .lazy(Builder::new, DataframeEvaluationRegression::setupDataframeEvaluationRegressionDeserializer); protected static void setupDataframeEvaluationRegressionDeserializer( ObjectDeserializer op) { op.add(Builder::actualField, JsonpDeserializer.stringDeserializer(), "actual_field"); op.add(Builder::predictedField, JsonpDeserializer.stringDeserializer(), "predicted_field"); op.add(Builder::metrics, DataframeEvaluationRegressionMetrics._DESERIALIZER, "metrics"); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy