All Downloads are FREE. Search and download functionalities are using the official Maven repository.

co.elastic.clients.elasticsearch.ml.PutDataFrameAnalyticsRequest Maven / Gradle / Ivy

/*
 * Licensed to Elasticsearch B.V. under one or more contributor
 * license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright
 * ownership. Elasticsearch B.V. licenses this file to you under
 * the Apache License, Version 2.0 (the "License"); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package co.elastic.clients.elasticsearch.ml;

import co.elastic.clients.elasticsearch._types.ErrorResponse;
import co.elastic.clients.elasticsearch._types.RequestBase;
import co.elastic.clients.json.JsonpDeserializable;
import co.elastic.clients.json.JsonpDeserializer;
import co.elastic.clients.json.JsonpMapper;
import co.elastic.clients.json.JsonpSerializable;
import co.elastic.clients.json.ObjectBuilderDeserializer;
import co.elastic.clients.json.ObjectDeserializer;
import co.elastic.clients.transport.Endpoint;
import co.elastic.clients.transport.endpoints.SimpleEndpoint;
import co.elastic.clients.util.ApiTypeHelper;
import co.elastic.clients.util.ObjectBuilder;
import jakarta.json.stream.JsonGenerator;
import java.lang.Boolean;
import java.lang.Integer;
import java.lang.String;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.function.Function;
import javax.annotation.Nullable;

//----------------------------------------------------------------
//       THIS CODE IS GENERATED. MANUAL EDITS WILL BE LOST.
//----------------------------------------------------------------
//
// This code is generated from the Elasticsearch API specification
// at https://github.com/elastic/elasticsearch-specification
//
// Manual updates to this file will be lost when the code is
// re-generated.
//
// If you find a property that is missing or wrongly typed, please
// open an issue or a PR on the API specification repository.
//
//----------------------------------------------------------------

// typedef: ml.put_data_frame_analytics.Request

/**
 * Create a data frame analytics job. This API creates a data frame analytics
 * job that performs an analysis on the source indices and stores the outcome in
 * a destination index.
 * 
 * @see API
 *      specification
 */
@JsonpDeserializable
public class PutDataFrameAnalyticsRequest extends RequestBase implements JsonpSerializable {
	@Nullable
	private final Boolean allowLazyStart;

	private final DataframeAnalysis analysis;

	@Nullable
	private final DataframeAnalysisAnalyzedFields analyzedFields;

	@Nullable
	private final String description;

	private final DataframeAnalyticsDestination dest;

	private final Map> headers;

	private final String id;

	@Nullable
	private final Integer maxNumThreads;

	@Nullable
	private final String modelMemoryLimit;

	private final DataframeAnalyticsSource source;

	@Nullable
	private final String version;

	// ---------------------------------------------------------------------------------------------

	private PutDataFrameAnalyticsRequest(Builder builder) {

		this.allowLazyStart = builder.allowLazyStart;
		this.analysis = ApiTypeHelper.requireNonNull(builder.analysis, this, "analysis");
		this.analyzedFields = builder.analyzedFields;
		this.description = builder.description;
		this.dest = ApiTypeHelper.requireNonNull(builder.dest, this, "dest");
		this.headers = ApiTypeHelper.unmodifiable(builder.headers);
		this.id = ApiTypeHelper.requireNonNull(builder.id, this, "id");
		this.maxNumThreads = builder.maxNumThreads;
		this.modelMemoryLimit = builder.modelMemoryLimit;
		this.source = ApiTypeHelper.requireNonNull(builder.source, this, "source");
		this.version = builder.version;

	}

	public static PutDataFrameAnalyticsRequest of(Function> fn) {
		return fn.apply(new Builder()).build();
	}

	/**
	 * Specifies whether this job can start when there is insufficient machine
	 * learning node capacity for it to be immediately assigned to a node. If set to
	 * false and a machine learning node with capacity to run the job
	 * cannot be immediately found, the API returns an error. If set to
	 * true, the API does not return an error; the job waits in the
	 * starting state until sufficient machine learning node capacity
	 * is available. This behavior is also affected by the cluster-wide
	 * xpack.ml.max_lazy_ml_nodes setting.
	 * 

* API name: {@code allow_lazy_start} */ @Nullable public final Boolean allowLazyStart() { return this.allowLazyStart; } /** * Required - The analysis configuration, which contains the information * necessary to perform one of the following types of analysis: classification, * outlier detection, or regression. *

* API name: {@code analysis} */ public final DataframeAnalysis analysis() { return this.analysis; } /** * Specifies includes and/or excludes patterns to * select which fields will be included in the analysis. The patterns specified * in excludes are applied last, therefore excludes * takes precedence. In other words, if the same field is specified in both * includes and excludes, then the field will not be * included in the analysis. If analyzed_fields is not set, only * the relevant fields will be included. For example, all the numeric fields for * outlier detection. The supported fields vary for each type of analysis. * Outlier detection requires numeric or boolean data to analyze. * The algorithms don’t support missing values therefore fields that have data * types other than numeric or boolean are ignored. Documents where included * fields contain missing values, null values, or an array are also ignored. * Therefore the dest index may contain documents that don’t have * an outlier score. Regression supports fields that are numeric, * boolean, text, keyword, and * ip data types. It is also tolerant of missing values. Fields * that are supported are included in the analysis, other fields are ignored. * Documents where included fields contain an array with two or more values are * also ignored. Documents in the dest index that don’t contain a * results field are not included in the regression analysis. Classification * supports fields that are numeric, boolean, text, * keyword, and ip data types. It is also tolerant of * missing values. Fields that are supported are included in the analysis, other * fields are ignored. Documents where included fields contain an array with two * or more values are also ignored. Documents in the dest index * that don’t contain a results field are not included in the classification * analysis. Classification analysis can be improved by mapping ordinal variable * values to a single number. For example, in case of age ranges, you can model * the values as 0-14 = 0, 15-24 = 1, * 25-34 = 2, and so on. *

* API name: {@code analyzed_fields} */ @Nullable public final DataframeAnalysisAnalyzedFields analyzedFields() { return this.analyzedFields; } /** * A description of the job. *

* API name: {@code description} */ @Nullable public final String description() { return this.description; } /** * Required - The destination configuration. *

* API name: {@code dest} */ public final DataframeAnalyticsDestination dest() { return this.dest; } /** * API name: {@code headers} */ public final Map> headers() { return this.headers; } /** * Required - Identifier for the data frame analytics job. This identifier can * contain lowercase alphanumeric characters (a-z and 0-9), hyphens, and * underscores. It must start and end with alphanumeric characters. *

* API name: {@code id} */ public final String id() { return this.id; } /** * The maximum number of threads to be used by the analysis. Using more threads * may decrease the time necessary to complete the analysis at the cost of using * more CPU. Note that the process may use additional threads for operational * functionality other than the analysis itself. *

* API name: {@code max_num_threads} */ @Nullable public final Integer maxNumThreads() { return this.maxNumThreads; } /** * The approximate maximum amount of memory resources that are permitted for * analytical processing. If your elasticsearch.yml file contains * an xpack.ml.max_model_memory_limit setting, an error occurs when * you try to create data frame analytics jobs that have * model_memory_limit values greater than that setting. *

* API name: {@code model_memory_limit} */ @Nullable public final String modelMemoryLimit() { return this.modelMemoryLimit; } /** * Required - The configuration of how to source the analysis data. *

* API name: {@code source} */ public final DataframeAnalyticsSource source() { return this.source; } /** * API name: {@code version} */ @Nullable public final String version() { return this.version; } /** * Serialize this object to JSON. */ public void serialize(JsonGenerator generator, JsonpMapper mapper) { generator.writeStartObject(); serializeInternal(generator, mapper); generator.writeEnd(); } protected void serializeInternal(JsonGenerator generator, JsonpMapper mapper) { if (this.allowLazyStart != null) { generator.writeKey("allow_lazy_start"); generator.write(this.allowLazyStart); } generator.writeKey("analysis"); this.analysis.serialize(generator, mapper); if (this.analyzedFields != null) { generator.writeKey("analyzed_fields"); this.analyzedFields.serialize(generator, mapper); } if (this.description != null) { generator.writeKey("description"); generator.write(this.description); } generator.writeKey("dest"); this.dest.serialize(generator, mapper); if (ApiTypeHelper.isDefined(this.headers)) { generator.writeKey("headers"); generator.writeStartObject(); for (Map.Entry> item0 : this.headers.entrySet()) { generator.writeKey(item0.getKey()); generator.writeStartArray(); if (item0.getValue() != null) { for (String item1 : item0.getValue()) { generator.write(item1); } } generator.writeEnd(); } generator.writeEnd(); } if (this.maxNumThreads != null) { generator.writeKey("max_num_threads"); generator.write(this.maxNumThreads); } if (this.modelMemoryLimit != null) { generator.writeKey("model_memory_limit"); generator.write(this.modelMemoryLimit); } generator.writeKey("source"); this.source.serialize(generator, mapper); if (this.version != null) { generator.writeKey("version"); generator.write(this.version); } } // --------------------------------------------------------------------------------------------- /** * Builder for {@link PutDataFrameAnalyticsRequest}. */ public static class Builder extends RequestBase.AbstractBuilder implements ObjectBuilder { @Nullable private Boolean allowLazyStart; private DataframeAnalysis analysis; @Nullable private DataframeAnalysisAnalyzedFields analyzedFields; @Nullable private String description; private DataframeAnalyticsDestination dest; @Nullable private Map> headers; private String id; @Nullable private Integer maxNumThreads; @Nullable private String modelMemoryLimit; private DataframeAnalyticsSource source; @Nullable private String version; /** * Specifies whether this job can start when there is insufficient machine * learning node capacity for it to be immediately assigned to a node. If set to * false and a machine learning node with capacity to run the job * cannot be immediately found, the API returns an error. If set to * true, the API does not return an error; the job waits in the * starting state until sufficient machine learning node capacity * is available. This behavior is also affected by the cluster-wide * xpack.ml.max_lazy_ml_nodes setting. *

* API name: {@code allow_lazy_start} */ public final Builder allowLazyStart(@Nullable Boolean value) { this.allowLazyStart = value; return this; } /** * Required - The analysis configuration, which contains the information * necessary to perform one of the following types of analysis: classification, * outlier detection, or regression. *

* API name: {@code analysis} */ public final Builder analysis(DataframeAnalysis value) { this.analysis = value; return this; } /** * Required - The analysis configuration, which contains the information * necessary to perform one of the following types of analysis: classification, * outlier detection, or regression. *

* API name: {@code analysis} */ public final Builder analysis(Function> fn) { return this.analysis(fn.apply(new DataframeAnalysis.Builder()).build()); } /** * Specifies includes and/or excludes patterns to * select which fields will be included in the analysis. The patterns specified * in excludes are applied last, therefore excludes * takes precedence. In other words, if the same field is specified in both * includes and excludes, then the field will not be * included in the analysis. If analyzed_fields is not set, only * the relevant fields will be included. For example, all the numeric fields for * outlier detection. The supported fields vary for each type of analysis. * Outlier detection requires numeric or boolean data to analyze. * The algorithms don’t support missing values therefore fields that have data * types other than numeric or boolean are ignored. Documents where included * fields contain missing values, null values, or an array are also ignored. * Therefore the dest index may contain documents that don’t have * an outlier score. Regression supports fields that are numeric, * boolean, text, keyword, and * ip data types. It is also tolerant of missing values. Fields * that are supported are included in the analysis, other fields are ignored. * Documents where included fields contain an array with two or more values are * also ignored. Documents in the dest index that don’t contain a * results field are not included in the regression analysis. Classification * supports fields that are numeric, boolean, text, * keyword, and ip data types. It is also tolerant of * missing values. Fields that are supported are included in the analysis, other * fields are ignored. Documents where included fields contain an array with two * or more values are also ignored. Documents in the dest index * that don’t contain a results field are not included in the classification * analysis. Classification analysis can be improved by mapping ordinal variable * values to a single number. For example, in case of age ranges, you can model * the values as 0-14 = 0, 15-24 = 1, * 25-34 = 2, and so on. *

* API name: {@code analyzed_fields} */ public final Builder analyzedFields(@Nullable DataframeAnalysisAnalyzedFields value) { this.analyzedFields = value; return this; } /** * Specifies includes and/or excludes patterns to * select which fields will be included in the analysis. The patterns specified * in excludes are applied last, therefore excludes * takes precedence. In other words, if the same field is specified in both * includes and excludes, then the field will not be * included in the analysis. If analyzed_fields is not set, only * the relevant fields will be included. For example, all the numeric fields for * outlier detection. The supported fields vary for each type of analysis. * Outlier detection requires numeric or boolean data to analyze. * The algorithms don’t support missing values therefore fields that have data * types other than numeric or boolean are ignored. Documents where included * fields contain missing values, null values, or an array are also ignored. * Therefore the dest index may contain documents that don’t have * an outlier score. Regression supports fields that are numeric, * boolean, text, keyword, and * ip data types. It is also tolerant of missing values. Fields * that are supported are included in the analysis, other fields are ignored. * Documents where included fields contain an array with two or more values are * also ignored. Documents in the dest index that don’t contain a * results field are not included in the regression analysis. Classification * supports fields that are numeric, boolean, text, * keyword, and ip data types. It is also tolerant of * missing values. Fields that are supported are included in the analysis, other * fields are ignored. Documents where included fields contain an array with two * or more values are also ignored. Documents in the dest index * that don’t contain a results field are not included in the classification * analysis. Classification analysis can be improved by mapping ordinal variable * values to a single number. For example, in case of age ranges, you can model * the values as 0-14 = 0, 15-24 = 1, * 25-34 = 2, and so on. *

* API name: {@code analyzed_fields} */ public final Builder analyzedFields( Function> fn) { return this.analyzedFields(fn.apply(new DataframeAnalysisAnalyzedFields.Builder()).build()); } /** * A description of the job. *

* API name: {@code description} */ public final Builder description(@Nullable String value) { this.description = value; return this; } /** * Required - The destination configuration. *

* API name: {@code dest} */ public final Builder dest(DataframeAnalyticsDestination value) { this.dest = value; return this; } /** * Required - The destination configuration. *

* API name: {@code dest} */ public final Builder dest( Function> fn) { return this.dest(fn.apply(new DataframeAnalyticsDestination.Builder()).build()); } /** * API name: {@code headers} *

* Adds all entries of map to headers. */ public final Builder headers(Map> map) { this.headers = _mapPutAll(this.headers, map); return this; } /** * API name: {@code headers} *

* Adds an entry to headers. */ public final Builder headers(String key, List value) { this.headers = _mapPut(this.headers, key, value); return this; } /** * Required - Identifier for the data frame analytics job. This identifier can * contain lowercase alphanumeric characters (a-z and 0-9), hyphens, and * underscores. It must start and end with alphanumeric characters. *

* API name: {@code id} */ public final Builder id(String value) { this.id = value; return this; } /** * The maximum number of threads to be used by the analysis. Using more threads * may decrease the time necessary to complete the analysis at the cost of using * more CPU. Note that the process may use additional threads for operational * functionality other than the analysis itself. *

* API name: {@code max_num_threads} */ public final Builder maxNumThreads(@Nullable Integer value) { this.maxNumThreads = value; return this; } /** * The approximate maximum amount of memory resources that are permitted for * analytical processing. If your elasticsearch.yml file contains * an xpack.ml.max_model_memory_limit setting, an error occurs when * you try to create data frame analytics jobs that have * model_memory_limit values greater than that setting. *

* API name: {@code model_memory_limit} */ public final Builder modelMemoryLimit(@Nullable String value) { this.modelMemoryLimit = value; return this; } /** * Required - The configuration of how to source the analysis data. *

* API name: {@code source} */ public final Builder source(DataframeAnalyticsSource value) { this.source = value; return this; } /** * Required - The configuration of how to source the analysis data. *

* API name: {@code source} */ public final Builder source( Function> fn) { return this.source(fn.apply(new DataframeAnalyticsSource.Builder()).build()); } /** * API name: {@code version} */ public final Builder version(@Nullable String value) { this.version = value; return this; } @Override protected Builder self() { return this; } /** * Builds a {@link PutDataFrameAnalyticsRequest}. * * @throws NullPointerException * if some of the required fields are null. */ public PutDataFrameAnalyticsRequest build() { _checkSingleUse(); return new PutDataFrameAnalyticsRequest(this); } } // --------------------------------------------------------------------------------------------- /** * Json deserializer for {@link PutDataFrameAnalyticsRequest} */ public static final JsonpDeserializer _DESERIALIZER = ObjectBuilderDeserializer .lazy(Builder::new, PutDataFrameAnalyticsRequest::setupPutDataFrameAnalyticsRequestDeserializer); protected static void setupPutDataFrameAnalyticsRequestDeserializer( ObjectDeserializer op) { op.add(Builder::allowLazyStart, JsonpDeserializer.booleanDeserializer(), "allow_lazy_start"); op.add(Builder::analysis, DataframeAnalysis._DESERIALIZER, "analysis"); op.add(Builder::analyzedFields, DataframeAnalysisAnalyzedFields._DESERIALIZER, "analyzed_fields"); op.add(Builder::description, JsonpDeserializer.stringDeserializer(), "description"); op.add(Builder::dest, DataframeAnalyticsDestination._DESERIALIZER, "dest"); op.add(Builder::headers, JsonpDeserializer.stringMapDeserializer( JsonpDeserializer.arrayDeserializer(JsonpDeserializer.stringDeserializer())), "headers"); op.add(Builder::maxNumThreads, JsonpDeserializer.integerDeserializer(), "max_num_threads"); op.add(Builder::modelMemoryLimit, JsonpDeserializer.stringDeserializer(), "model_memory_limit"); op.add(Builder::source, DataframeAnalyticsSource._DESERIALIZER, "source"); op.add(Builder::version, JsonpDeserializer.stringDeserializer(), "version"); } // --------------------------------------------------------------------------------------------- /** * Endpoint "{@code ml.put_data_frame_analytics}". */ public static final Endpoint _ENDPOINT = new SimpleEndpoint<>( "es/ml.put_data_frame_analytics", // Request method request -> { return "PUT"; }, // Request path request -> { final int _id = 1 << 0; int propsSet = 0; propsSet |= _id; if (propsSet == (_id)) { StringBuilder buf = new StringBuilder(); buf.append("/_ml"); buf.append("/data_frame"); buf.append("/analytics"); buf.append("/"); SimpleEndpoint.pathEncode(request.id, buf); return buf.toString(); } throw SimpleEndpoint.noPathTemplateFound("path"); }, // Path parameters request -> { Map params = new HashMap<>(); final int _id = 1 << 0; int propsSet = 0; propsSet |= _id; if (propsSet == (_id)) { params.put("id", request.id); } return params; }, // Request parameters request -> { return Collections.emptyMap(); }, SimpleEndpoint.emptyMap(), true, PutDataFrameAnalyticsResponse._DESERIALIZER); }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy