All Downloads are FREE. Search and download functionalities are using the official Maven repository.

co.elastic.clients.elasticsearch.ml.evaluate_data_frame.DataframeRegressionSummary Maven / Gradle / Ivy

/*
 * Licensed to Elasticsearch B.V. under one or more contributor
 * license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright
 * ownership. Elasticsearch B.V. licenses this file to you under
 * the Apache License, Version 2.0 (the "License"); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package co.elastic.clients.elasticsearch.ml.evaluate_data_frame;

import co.elastic.clients.json.JsonpDeserializable;
import co.elastic.clients.json.JsonpDeserializer;
import co.elastic.clients.json.JsonpMapper;
import co.elastic.clients.json.JsonpSerializable;
import co.elastic.clients.json.JsonpUtils;
import co.elastic.clients.json.ObjectBuilderDeserializer;
import co.elastic.clients.json.ObjectDeserializer;
import co.elastic.clients.util.ObjectBuilder;
import co.elastic.clients.util.WithJsonObjectBuilderBase;
import jakarta.json.stream.JsonGenerator;
import java.util.Objects;
import java.util.function.Function;
import javax.annotation.Nullable;

//----------------------------------------------------------------
//       THIS CODE IS GENERATED. MANUAL EDITS WILL BE LOST.
//----------------------------------------------------------------
//
// This code is generated from the Elasticsearch API specification
// at https://github.com/elastic/elasticsearch-specification
//
// Manual updates to this file will be lost when the code is
// re-generated.
//
// If you find a property that is missing or wrongly typed, please
// open an issue or a PR on the API specification repository.
//
//----------------------------------------------------------------

// typedef: ml.evaluate_data_frame.DataframeRegressionSummary

/**
 *
 * @see API
 *      specification
 */
@JsonpDeserializable
public class DataframeRegressionSummary implements JsonpSerializable {
	@Nullable
	private final DataframeEvaluationValue huber;

	@Nullable
	private final DataframeEvaluationValue mse;

	@Nullable
	private final DataframeEvaluationValue msle;

	@Nullable
	private final DataframeEvaluationValue rSquared;

	// ---------------------------------------------------------------------------------------------

	private DataframeRegressionSummary(Builder builder) {

		this.huber = builder.huber;
		this.mse = builder.mse;
		this.msle = builder.msle;
		this.rSquared = builder.rSquared;

	}

	public static DataframeRegressionSummary of(Function> fn) {
		return fn.apply(new Builder()).build();
	}

	/**
	 * Pseudo Huber loss function.
	 * 

* API name: {@code huber} */ @Nullable public final DataframeEvaluationValue huber() { return this.huber; } /** * Average squared difference between the predicted values and the actual * (ground truth) value. *

* API name: {@code mse} */ @Nullable public final DataframeEvaluationValue mse() { return this.mse; } /** * Average squared difference between the logarithm of the predicted values and * the logarithm of the actual (ground truth) value. *

* API name: {@code msle} */ @Nullable public final DataframeEvaluationValue msle() { return this.msle; } /** * Proportion of the variance in the dependent variable that is predictable from * the independent variables. *

* API name: {@code r_squared} */ @Nullable public final DataframeEvaluationValue rSquared() { return this.rSquared; } /** * Serialize this object to JSON. */ public void serialize(JsonGenerator generator, JsonpMapper mapper) { generator.writeStartObject(); serializeInternal(generator, mapper); generator.writeEnd(); } protected void serializeInternal(JsonGenerator generator, JsonpMapper mapper) { if (this.huber != null) { generator.writeKey("huber"); this.huber.serialize(generator, mapper); } if (this.mse != null) { generator.writeKey("mse"); this.mse.serialize(generator, mapper); } if (this.msle != null) { generator.writeKey("msle"); this.msle.serialize(generator, mapper); } if (this.rSquared != null) { generator.writeKey("r_squared"); this.rSquared.serialize(generator, mapper); } } @Override public String toString() { return JsonpUtils.toString(this); } // --------------------------------------------------------------------------------------------- /** * Builder for {@link DataframeRegressionSummary}. */ public static class Builder extends WithJsonObjectBuilderBase implements ObjectBuilder { @Nullable private DataframeEvaluationValue huber; @Nullable private DataframeEvaluationValue mse; @Nullable private DataframeEvaluationValue msle; @Nullable private DataframeEvaluationValue rSquared; /** * Pseudo Huber loss function. *

* API name: {@code huber} */ public final Builder huber(@Nullable DataframeEvaluationValue value) { this.huber = value; return this; } /** * Pseudo Huber loss function. *

* API name: {@code huber} */ public final Builder huber( Function> fn) { return this.huber(fn.apply(new DataframeEvaluationValue.Builder()).build()); } /** * Average squared difference between the predicted values and the actual * (ground truth) value. *

* API name: {@code mse} */ public final Builder mse(@Nullable DataframeEvaluationValue value) { this.mse = value; return this; } /** * Average squared difference between the predicted values and the actual * (ground truth) value. *

* API name: {@code mse} */ public final Builder mse( Function> fn) { return this.mse(fn.apply(new DataframeEvaluationValue.Builder()).build()); } /** * Average squared difference between the logarithm of the predicted values and * the logarithm of the actual (ground truth) value. *

* API name: {@code msle} */ public final Builder msle(@Nullable DataframeEvaluationValue value) { this.msle = value; return this; } /** * Average squared difference between the logarithm of the predicted values and * the logarithm of the actual (ground truth) value. *

* API name: {@code msle} */ public final Builder msle( Function> fn) { return this.msle(fn.apply(new DataframeEvaluationValue.Builder()).build()); } /** * Proportion of the variance in the dependent variable that is predictable from * the independent variables. *

* API name: {@code r_squared} */ public final Builder rSquared(@Nullable DataframeEvaluationValue value) { this.rSquared = value; return this; } /** * Proportion of the variance in the dependent variable that is predictable from * the independent variables. *

* API name: {@code r_squared} */ public final Builder rSquared( Function> fn) { return this.rSquared(fn.apply(new DataframeEvaluationValue.Builder()).build()); } @Override protected Builder self() { return this; } /** * Builds a {@link DataframeRegressionSummary}. * * @throws NullPointerException * if some of the required fields are null. */ public DataframeRegressionSummary build() { _checkSingleUse(); return new DataframeRegressionSummary(this); } } // --------------------------------------------------------------------------------------------- /** * Json deserializer for {@link DataframeRegressionSummary} */ public static final JsonpDeserializer _DESERIALIZER = ObjectBuilderDeserializer .lazy(Builder::new, DataframeRegressionSummary::setupDataframeRegressionSummaryDeserializer); protected static void setupDataframeRegressionSummaryDeserializer( ObjectDeserializer op) { op.add(Builder::huber, DataframeEvaluationValue._DESERIALIZER, "huber"); op.add(Builder::mse, DataframeEvaluationValue._DESERIALIZER, "mse"); op.add(Builder::msle, DataframeEvaluationValue._DESERIALIZER, "msle"); op.add(Builder::rSquared, DataframeEvaluationValue._DESERIALIZER, "r_squared"); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy