All Downloads are FREE. Search and download functionalities are using the official Maven repository.

co.elastic.clients.elasticsearch.ml.AnalysisConfigRead Maven / Gradle / Ivy

/*
 * Licensed to Elasticsearch B.V. under one or more contributor
 * license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright
 * ownership. Elasticsearch B.V. licenses this file to you under
 * the Apache License, Version 2.0 (the "License"); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

//----------------------------------------------------
// THIS CODE IS GENERATED. MANUAL EDITS WILL BE LOST.
//----------------------------------------------------

package co.elastic.clients.elasticsearch.ml;

import co.elastic.clients.elasticsearch._types.Time;
import co.elastic.clients.json.JsonpDeserializable;
import co.elastic.clients.json.JsonpDeserializer;
import co.elastic.clients.json.JsonpMapper;
import co.elastic.clients.json.JsonpSerializable;
import co.elastic.clients.json.ObjectBuilderDeserializer;
import co.elastic.clients.json.ObjectDeserializer;
import co.elastic.clients.util.ApiTypeHelper;
import co.elastic.clients.util.ObjectBuilder;
import co.elastic.clients.util.WithJsonObjectBuilderBase;
import jakarta.json.stream.JsonGenerator;
import java.lang.Boolean;
import java.lang.String;
import java.util.List;
import java.util.Objects;
import java.util.function.Function;
import javax.annotation.Nullable;

// typedef: ml._types.AnalysisConfigRead

/**
 *
 * @see API
 *      specification
 */
@JsonpDeserializable
public class AnalysisConfigRead implements JsonpSerializable {
	private final String bucketSpan;

	@Nullable
	private final CategorizationAnalyzer categorizationAnalyzer;

	@Nullable
	private final String categorizationFieldName;

	private final List categorizationFilters;

	private final List detectors;

	private final List influencers;

	@Nullable
	private final Time modelPruneWindow;

	@Nullable
	private final Time latency;

	@Nullable
	private final Boolean multivariateByFields;

	@Nullable
	private final PerPartitionCategorization perPartitionCategorization;

	@Nullable
	private final String summaryCountFieldName;

	// ---------------------------------------------------------------------------------------------

	private AnalysisConfigRead(Builder builder) {

		this.bucketSpan = ApiTypeHelper.requireNonNull(builder.bucketSpan, this, "bucketSpan");
		this.categorizationAnalyzer = builder.categorizationAnalyzer;
		this.categorizationFieldName = builder.categorizationFieldName;
		this.categorizationFilters = ApiTypeHelper.unmodifiable(builder.categorizationFilters);
		this.detectors = ApiTypeHelper.unmodifiableRequired(builder.detectors, this, "detectors");
		this.influencers = ApiTypeHelper.unmodifiableRequired(builder.influencers, this, "influencers");
		this.modelPruneWindow = builder.modelPruneWindow;
		this.latency = builder.latency;
		this.multivariateByFields = builder.multivariateByFields;
		this.perPartitionCategorization = builder.perPartitionCategorization;
		this.summaryCountFieldName = builder.summaryCountFieldName;

	}

	public static AnalysisConfigRead of(Function> fn) {
		return fn.apply(new Builder()).build();
	}

	/**
	 * Required - The size of the interval that the analysis is aggregated into,
	 * typically between 5m and 1h. This value should be
	 * either a whole number of days or equate to a whole number of buckets in one
	 * day. If the anomaly detection job uses a datafeed with aggregations, this
	 * value must also be divisible by the interval of the date histogram
	 * aggregation.
	 * 
    *
  • @server_default 5m
  • *
*

* API name: {@code bucket_span} */ public final String bucketSpan() { return this.bucketSpan; } /** * If categorization_field_name is specified, you can also define * the analyzer that is used to interpret the categorization field. This * property cannot be used at the same time as * categorization_filters. The categorization analyzer specifies * how the categorization_field is interpreted by the * categorization process. The categorization_analyzer field can be * specified either as a string or as an object. If it is a string, it must * refer to a built-in analyzer or one added by another plugin. *

* API name: {@code categorization_analyzer} */ @Nullable public final CategorizationAnalyzer categorizationAnalyzer() { return this.categorizationAnalyzer; } /** * If this property is specified, the values of the specified field will be * categorized. The resulting categories must be used in a detector by setting * by_field_name, over_field_name, or * partition_field_name to the keyword mlcategory. *

* API name: {@code categorization_field_name} */ @Nullable public final String categorizationFieldName() { return this.categorizationFieldName; } /** * If categorization_field_name is specified, you can also define * optional filters. This property expects an array of regular expressions. The * expressions are used to filter out matching sequences from the categorization * field values. You can use this functionality to fine tune the categorization * by excluding sequences from consideration when categories are defined. For * example, you can exclude SQL statements that appear in your log files. This * property cannot be used at the same time as * categorization_analyzer. If you only want to define simple * regular expression filters that are applied prior to tokenization, setting * this property is the easiest method. If you also want to customize the * tokenizer or post-tokenization filtering, use the * categorization_analyzer property instead and include the filters * as pattern_replace character filters. The effect is exactly the same. *

* API name: {@code categorization_filters} */ public final List categorizationFilters() { return this.categorizationFilters; } /** * Required - Detector configuration objects specify which data fields a job * analyzes. They also specify which analytical functions are used. You can * specify multiple detectors for a job. If the detectors array does not contain * at least one detector, no analysis can occur and an error is returned. *

* API name: {@code detectors} */ public final List detectors() { return this.detectors; } /** * Required - A comma separated list of influencer field names. Typically these * can be the by, over, or partition fields that are used in the detector * configuration. You might also want to use a field name that is not * specifically named in a detector, but is available as part of the input data. * When you use multiple detectors, the use of influencers is recommended as it * aggregates results for each influencer entity. *

* API name: {@code influencers} */ public final List influencers() { return this.influencers; } /** * Advanced configuration option. Affects the pruning of models that have not * been updated for the given time duration. The value must be set to a multiple * of the bucket_span. If set too low, important information may be * removed from the model. For jobs created in 8.1 and later, the default value * is the greater of 30d or 20 times bucket_span. *

* API name: {@code model_prune_window} */ @Nullable public final Time modelPruneWindow() { return this.modelPruneWindow; } /** * The size of the window in which to expect data that is out of time order. If * you specify a non-zero value, it must be greater than or equal to one second. * NOTE: Latency is applicable only when you send data by using the post data * API. *

* API name: {@code latency} */ @Nullable public final Time latency() { return this.latency; } /** * This functionality is reserved for internal use. It is not supported for use * in customer environments and is not subject to the support SLA of official GA * features. If set to true, the analysis will automatically find * correlations between metrics for a given by field value and report anomalies * when those correlations cease to hold. For example, suppose CPU and memory * usage on host A is usually highly correlated with the same metrics on host B. * Perhaps this correlation occurs because they are running a load-balanced * application. If you enable this property, anomalies will be reported when, * for example, CPU usage on host A is high and the value of CPU usage on host B * is low. That is to say, you’ll see an anomaly when the CPU of host A is * unusual given the CPU of host B. To use the * multivariate_by_fields property, you must also specify * by_field_name in your detector. *

* API name: {@code multivariate_by_fields} */ @Nullable public final Boolean multivariateByFields() { return this.multivariateByFields; } /** * Settings related to how categorization interacts with partition fields. *

* API name: {@code per_partition_categorization} */ @Nullable public final PerPartitionCategorization perPartitionCategorization() { return this.perPartitionCategorization; } /** * If this property is specified, the data that is fed to the job is expected to * be pre-summarized. This property value is the name of the field that contains * the count of raw data points that have been summarized. The same * summary_count_field_name applies to all detectors in the job. * NOTE: The summary_count_field_name property cannot be used with * the metric function. *

* API name: {@code summary_count_field_name} */ @Nullable public final String summaryCountFieldName() { return this.summaryCountFieldName; } /** * Serialize this object to JSON. */ public void serialize(JsonGenerator generator, JsonpMapper mapper) { generator.writeStartObject(); serializeInternal(generator, mapper); generator.writeEnd(); } protected void serializeInternal(JsonGenerator generator, JsonpMapper mapper) { generator.writeKey("bucket_span"); generator.write(this.bucketSpan); if (this.categorizationAnalyzer != null) { generator.writeKey("categorization_analyzer"); this.categorizationAnalyzer.serialize(generator, mapper); } if (this.categorizationFieldName != null) { generator.writeKey("categorization_field_name"); generator.write(this.categorizationFieldName); } if (ApiTypeHelper.isDefined(this.categorizationFilters)) { generator.writeKey("categorization_filters"); generator.writeStartArray(); for (String item0 : this.categorizationFilters) { generator.write(item0); } generator.writeEnd(); } if (ApiTypeHelper.isDefined(this.detectors)) { generator.writeKey("detectors"); generator.writeStartArray(); for (DetectorRead item0 : this.detectors) { item0.serialize(generator, mapper); } generator.writeEnd(); } if (ApiTypeHelper.isDefined(this.influencers)) { generator.writeKey("influencers"); generator.writeStartArray(); for (String item0 : this.influencers) { generator.write(item0); } generator.writeEnd(); } if (this.modelPruneWindow != null) { generator.writeKey("model_prune_window"); this.modelPruneWindow.serialize(generator, mapper); } if (this.latency != null) { generator.writeKey("latency"); this.latency.serialize(generator, mapper); } if (this.multivariateByFields != null) { generator.writeKey("multivariate_by_fields"); generator.write(this.multivariateByFields); } if (this.perPartitionCategorization != null) { generator.writeKey("per_partition_categorization"); this.perPartitionCategorization.serialize(generator, mapper); } if (this.summaryCountFieldName != null) { generator.writeKey("summary_count_field_name"); generator.write(this.summaryCountFieldName); } } // --------------------------------------------------------------------------------------------- /** * Builder for {@link AnalysisConfigRead}. */ public static class Builder extends WithJsonObjectBuilderBase implements ObjectBuilder { private String bucketSpan; @Nullable private CategorizationAnalyzer categorizationAnalyzer; @Nullable private String categorizationFieldName; @Nullable private List categorizationFilters; private List detectors; private List influencers; @Nullable private Time modelPruneWindow; @Nullable private Time latency; @Nullable private Boolean multivariateByFields; @Nullable private PerPartitionCategorization perPartitionCategorization; @Nullable private String summaryCountFieldName; /** * Required - The size of the interval that the analysis is aggregated into, * typically between 5m and 1h. This value should be * either a whole number of days or equate to a whole number of buckets in one * day. If the anomaly detection job uses a datafeed with aggregations, this * value must also be divisible by the interval of the date histogram * aggregation. *

    *
  • @server_default 5m
  • *
*

* API name: {@code bucket_span} */ public final Builder bucketSpan(String value) { this.bucketSpan = value; return this; } /** * If categorization_field_name is specified, you can also define * the analyzer that is used to interpret the categorization field. This * property cannot be used at the same time as * categorization_filters. The categorization analyzer specifies * how the categorization_field is interpreted by the * categorization process. The categorization_analyzer field can be * specified either as a string or as an object. If it is a string, it must * refer to a built-in analyzer or one added by another plugin. *

* API name: {@code categorization_analyzer} */ public final Builder categorizationAnalyzer(@Nullable CategorizationAnalyzer value) { this.categorizationAnalyzer = value; return this; } /** * If categorization_field_name is specified, you can also define * the analyzer that is used to interpret the categorization field. This * property cannot be used at the same time as * categorization_filters. The categorization analyzer specifies * how the categorization_field is interpreted by the * categorization process. The categorization_analyzer field can be * specified either as a string or as an object. If it is a string, it must * refer to a built-in analyzer or one added by another plugin. *

* API name: {@code categorization_analyzer} */ public final Builder categorizationAnalyzer( Function> fn) { return this.categorizationAnalyzer(fn.apply(new CategorizationAnalyzer.Builder()).build()); } /** * If this property is specified, the values of the specified field will be * categorized. The resulting categories must be used in a detector by setting * by_field_name, over_field_name, or * partition_field_name to the keyword mlcategory. *

* API name: {@code categorization_field_name} */ public final Builder categorizationFieldName(@Nullable String value) { this.categorizationFieldName = value; return this; } /** * If categorization_field_name is specified, you can also define * optional filters. This property expects an array of regular expressions. The * expressions are used to filter out matching sequences from the categorization * field values. You can use this functionality to fine tune the categorization * by excluding sequences from consideration when categories are defined. For * example, you can exclude SQL statements that appear in your log files. This * property cannot be used at the same time as * categorization_analyzer. If you only want to define simple * regular expression filters that are applied prior to tokenization, setting * this property is the easiest method. If you also want to customize the * tokenizer or post-tokenization filtering, use the * categorization_analyzer property instead and include the filters * as pattern_replace character filters. The effect is exactly the same. *

* API name: {@code categorization_filters} *

* Adds all elements of list to categorizationFilters. */ public final Builder categorizationFilters(List list) { this.categorizationFilters = _listAddAll(this.categorizationFilters, list); return this; } /** * If categorization_field_name is specified, you can also define * optional filters. This property expects an array of regular expressions. The * expressions are used to filter out matching sequences from the categorization * field values. You can use this functionality to fine tune the categorization * by excluding sequences from consideration when categories are defined. For * example, you can exclude SQL statements that appear in your log files. This * property cannot be used at the same time as * categorization_analyzer. If you only want to define simple * regular expression filters that are applied prior to tokenization, setting * this property is the easiest method. If you also want to customize the * tokenizer or post-tokenization filtering, use the * categorization_analyzer property instead and include the filters * as pattern_replace character filters. The effect is exactly the same. *

* API name: {@code categorization_filters} *

* Adds one or more values to categorizationFilters. */ public final Builder categorizationFilters(String value, String... values) { this.categorizationFilters = _listAdd(this.categorizationFilters, value, values); return this; } /** * Required - Detector configuration objects specify which data fields a job * analyzes. They also specify which analytical functions are used. You can * specify multiple detectors for a job. If the detectors array does not contain * at least one detector, no analysis can occur and an error is returned. *

* API name: {@code detectors} *

* Adds all elements of list to detectors. */ public final Builder detectors(List list) { this.detectors = _listAddAll(this.detectors, list); return this; } /** * Required - Detector configuration objects specify which data fields a job * analyzes. They also specify which analytical functions are used. You can * specify multiple detectors for a job. If the detectors array does not contain * at least one detector, no analysis can occur and an error is returned. *

* API name: {@code detectors} *

* Adds one or more values to detectors. */ public final Builder detectors(DetectorRead value, DetectorRead... values) { this.detectors = _listAdd(this.detectors, value, values); return this; } /** * Required - Detector configuration objects specify which data fields a job * analyzes. They also specify which analytical functions are used. You can * specify multiple detectors for a job. If the detectors array does not contain * at least one detector, no analysis can occur and an error is returned. *

* API name: {@code detectors} *

* Adds a value to detectors using a builder lambda. */ public final Builder detectors(Function> fn) { return detectors(fn.apply(new DetectorRead.Builder()).build()); } /** * Required - A comma separated list of influencer field names. Typically these * can be the by, over, or partition fields that are used in the detector * configuration. You might also want to use a field name that is not * specifically named in a detector, but is available as part of the input data. * When you use multiple detectors, the use of influencers is recommended as it * aggregates results for each influencer entity. *

* API name: {@code influencers} *

* Adds all elements of list to influencers. */ public final Builder influencers(List list) { this.influencers = _listAddAll(this.influencers, list); return this; } /** * Required - A comma separated list of influencer field names. Typically these * can be the by, over, or partition fields that are used in the detector * configuration. You might also want to use a field name that is not * specifically named in a detector, but is available as part of the input data. * When you use multiple detectors, the use of influencers is recommended as it * aggregates results for each influencer entity. *

* API name: {@code influencers} *

* Adds one or more values to influencers. */ public final Builder influencers(String value, String... values) { this.influencers = _listAdd(this.influencers, value, values); return this; } /** * Advanced configuration option. Affects the pruning of models that have not * been updated for the given time duration. The value must be set to a multiple * of the bucket_span. If set too low, important information may be * removed from the model. For jobs created in 8.1 and later, the default value * is the greater of 30d or 20 times bucket_span. *

* API name: {@code model_prune_window} */ public final Builder modelPruneWindow(@Nullable Time value) { this.modelPruneWindow = value; return this; } /** * Advanced configuration option. Affects the pruning of models that have not * been updated for the given time duration. The value must be set to a multiple * of the bucket_span. If set too low, important information may be * removed from the model. For jobs created in 8.1 and later, the default value * is the greater of 30d or 20 times bucket_span. *

* API name: {@code model_prune_window} */ public final Builder modelPruneWindow(Function> fn) { return this.modelPruneWindow(fn.apply(new Time.Builder()).build()); } /** * The size of the window in which to expect data that is out of time order. If * you specify a non-zero value, it must be greater than or equal to one second. * NOTE: Latency is applicable only when you send data by using the post data * API. *

* API name: {@code latency} */ public final Builder latency(@Nullable Time value) { this.latency = value; return this; } /** * The size of the window in which to expect data that is out of time order. If * you specify a non-zero value, it must be greater than or equal to one second. * NOTE: Latency is applicable only when you send data by using the post data * API. *

* API name: {@code latency} */ public final Builder latency(Function> fn) { return this.latency(fn.apply(new Time.Builder()).build()); } /** * This functionality is reserved for internal use. It is not supported for use * in customer environments and is not subject to the support SLA of official GA * features. If set to true, the analysis will automatically find * correlations between metrics for a given by field value and report anomalies * when those correlations cease to hold. For example, suppose CPU and memory * usage on host A is usually highly correlated with the same metrics on host B. * Perhaps this correlation occurs because they are running a load-balanced * application. If you enable this property, anomalies will be reported when, * for example, CPU usage on host A is high and the value of CPU usage on host B * is low. That is to say, you’ll see an anomaly when the CPU of host A is * unusual given the CPU of host B. To use the * multivariate_by_fields property, you must also specify * by_field_name in your detector. *

* API name: {@code multivariate_by_fields} */ public final Builder multivariateByFields(@Nullable Boolean value) { this.multivariateByFields = value; return this; } /** * Settings related to how categorization interacts with partition fields. *

* API name: {@code per_partition_categorization} */ public final Builder perPartitionCategorization(@Nullable PerPartitionCategorization value) { this.perPartitionCategorization = value; return this; } /** * Settings related to how categorization interacts with partition fields. *

* API name: {@code per_partition_categorization} */ public final Builder perPartitionCategorization( Function> fn) { return this.perPartitionCategorization(fn.apply(new PerPartitionCategorization.Builder()).build()); } /** * If this property is specified, the data that is fed to the job is expected to * be pre-summarized. This property value is the name of the field that contains * the count of raw data points that have been summarized. The same * summary_count_field_name applies to all detectors in the job. * NOTE: The summary_count_field_name property cannot be used with * the metric function. *

* API name: {@code summary_count_field_name} */ public final Builder summaryCountFieldName(@Nullable String value) { this.summaryCountFieldName = value; return this; } @Override protected Builder self() { return this; } /** * Builds a {@link AnalysisConfigRead}. * * @throws NullPointerException * if some of the required fields are null. */ public AnalysisConfigRead build() { _checkSingleUse(); return new AnalysisConfigRead(this); } } // --------------------------------------------------------------------------------------------- /** * Json deserializer for {@link AnalysisConfigRead} */ public static final JsonpDeserializer _DESERIALIZER = ObjectBuilderDeserializer .lazy(Builder::new, AnalysisConfigRead::setupAnalysisConfigReadDeserializer); protected static void setupAnalysisConfigReadDeserializer(ObjectDeserializer op) { op.add(Builder::bucketSpan, JsonpDeserializer.stringDeserializer(), "bucket_span"); op.add(Builder::categorizationAnalyzer, CategorizationAnalyzer._DESERIALIZER, "categorization_analyzer"); op.add(Builder::categorizationFieldName, JsonpDeserializer.stringDeserializer(), "categorization_field_name"); op.add(Builder::categorizationFilters, JsonpDeserializer.arrayDeserializer(JsonpDeserializer.stringDeserializer()), "categorization_filters"); op.add(Builder::detectors, JsonpDeserializer.arrayDeserializer(DetectorRead._DESERIALIZER), "detectors"); op.add(Builder::influencers, JsonpDeserializer.arrayDeserializer(JsonpDeserializer.stringDeserializer()), "influencers"); op.add(Builder::modelPruneWindow, Time._DESERIALIZER, "model_prune_window"); op.add(Builder::latency, Time._DESERIALIZER, "latency"); op.add(Builder::multivariateByFields, JsonpDeserializer.booleanDeserializer(), "multivariate_by_fields"); op.add(Builder::perPartitionCategorization, PerPartitionCategorization._DESERIALIZER, "per_partition_categorization"); op.add(Builder::summaryCountFieldName, JsonpDeserializer.stringDeserializer(), "summary_count_field_name"); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy