co.elastic.clients.elasticsearch.ml.AnalysisConfigRead Maven / Gradle / Ivy
/*
* Licensed to Elasticsearch B.V. under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch B.V. licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
//----------------------------------------------------
// THIS CODE IS GENERATED. MANUAL EDITS WILL BE LOST.
//----------------------------------------------------
package co.elastic.clients.elasticsearch.ml;
import co.elastic.clients.elasticsearch._types.Time;
import co.elastic.clients.json.JsonpDeserializable;
import co.elastic.clients.json.JsonpDeserializer;
import co.elastic.clients.json.JsonpMapper;
import co.elastic.clients.json.JsonpSerializable;
import co.elastic.clients.json.ObjectBuilderDeserializer;
import co.elastic.clients.json.ObjectDeserializer;
import co.elastic.clients.util.ApiTypeHelper;
import co.elastic.clients.util.ObjectBuilder;
import co.elastic.clients.util.WithJsonObjectBuilderBase;
import jakarta.json.stream.JsonGenerator;
import java.lang.Boolean;
import java.lang.String;
import java.util.List;
import java.util.Objects;
import java.util.function.Function;
import javax.annotation.Nullable;
// typedef: ml._types.AnalysisConfigRead
/**
*
* @see API
* specification
*/
@JsonpDeserializable
public class AnalysisConfigRead implements JsonpSerializable {
private final String bucketSpan;
@Nullable
private final CategorizationAnalyzer categorizationAnalyzer;
@Nullable
private final String categorizationFieldName;
private final List categorizationFilters;
private final List detectors;
private final List influencers;
@Nullable
private final Time modelPruneWindow;
@Nullable
private final Time latency;
@Nullable
private final Boolean multivariateByFields;
@Nullable
private final PerPartitionCategorization perPartitionCategorization;
@Nullable
private final String summaryCountFieldName;
// ---------------------------------------------------------------------------------------------
private AnalysisConfigRead(Builder builder) {
this.bucketSpan = ApiTypeHelper.requireNonNull(builder.bucketSpan, this, "bucketSpan");
this.categorizationAnalyzer = builder.categorizationAnalyzer;
this.categorizationFieldName = builder.categorizationFieldName;
this.categorizationFilters = ApiTypeHelper.unmodifiable(builder.categorizationFilters);
this.detectors = ApiTypeHelper.unmodifiableRequired(builder.detectors, this, "detectors");
this.influencers = ApiTypeHelper.unmodifiableRequired(builder.influencers, this, "influencers");
this.modelPruneWindow = builder.modelPruneWindow;
this.latency = builder.latency;
this.multivariateByFields = builder.multivariateByFields;
this.perPartitionCategorization = builder.perPartitionCategorization;
this.summaryCountFieldName = builder.summaryCountFieldName;
}
public static AnalysisConfigRead of(Function> fn) {
return fn.apply(new Builder()).build();
}
/**
* Required - The size of the interval that the analysis is aggregated into,
* typically between 5m
and 1h
. This value should be
* either a whole number of days or equate to a whole number of buckets in one
* day. If the anomaly detection job uses a datafeed with aggregations, this
* value must also be divisible by the interval of the date histogram
* aggregation.
*
* - @server_default 5m
*
*
* API name: {@code bucket_span}
*/
public final String bucketSpan() {
return this.bucketSpan;
}
/**
* If categorization_field_name
is specified, you can also define
* the analyzer that is used to interpret the categorization field. This
* property cannot be used at the same time as
* categorization_filters
. The categorization analyzer specifies
* how the categorization_field
is interpreted by the
* categorization process. The categorization_analyzer
field can be
* specified either as a string or as an object. If it is a string, it must
* refer to a built-in analyzer or one added by another plugin.
*
* API name: {@code categorization_analyzer}
*/
@Nullable
public final CategorizationAnalyzer categorizationAnalyzer() {
return this.categorizationAnalyzer;
}
/**
* If this property is specified, the values of the specified field will be
* categorized. The resulting categories must be used in a detector by setting
* by_field_name
, over_field_name
, or
* partition_field_name
to the keyword mlcategory
.
*
* API name: {@code categorization_field_name}
*/
@Nullable
public final String categorizationFieldName() {
return this.categorizationFieldName;
}
/**
* If categorization_field_name
is specified, you can also define
* optional filters. This property expects an array of regular expressions. The
* expressions are used to filter out matching sequences from the categorization
* field values. You can use this functionality to fine tune the categorization
* by excluding sequences from consideration when categories are defined. For
* example, you can exclude SQL statements that appear in your log files. This
* property cannot be used at the same time as
* categorization_analyzer
. If you only want to define simple
* regular expression filters that are applied prior to tokenization, setting
* this property is the easiest method. If you also want to customize the
* tokenizer or post-tokenization filtering, use the
* categorization_analyzer
property instead and include the filters
* as pattern_replace character filters. The effect is exactly the same.
*
* API name: {@code categorization_filters}
*/
public final List categorizationFilters() {
return this.categorizationFilters;
}
/**
* Required - Detector configuration objects specify which data fields a job
* analyzes. They also specify which analytical functions are used. You can
* specify multiple detectors for a job. If the detectors array does not contain
* at least one detector, no analysis can occur and an error is returned.
*
* API name: {@code detectors}
*/
public final List detectors() {
return this.detectors;
}
/**
* Required - A comma separated list of influencer field names. Typically these
* can be the by, over, or partition fields that are used in the detector
* configuration. You might also want to use a field name that is not
* specifically named in a detector, but is available as part of the input data.
* When you use multiple detectors, the use of influencers is recommended as it
* aggregates results for each influencer entity.
*
* API name: {@code influencers}
*/
public final List influencers() {
return this.influencers;
}
/**
* Advanced configuration option. Affects the pruning of models that have not
* been updated for the given time duration. The value must be set to a multiple
* of the bucket_span
. If set too low, important information may be
* removed from the model. For jobs created in 8.1 and later, the default value
* is the greater of 30d
or 20 times bucket_span
.
*
* API name: {@code model_prune_window}
*/
@Nullable
public final Time modelPruneWindow() {
return this.modelPruneWindow;
}
/**
* The size of the window in which to expect data that is out of time order. If
* you specify a non-zero value, it must be greater than or equal to one second.
* NOTE: Latency is applicable only when you send data by using the post data
* API.
*
* API name: {@code latency}
*/
@Nullable
public final Time latency() {
return this.latency;
}
/**
* This functionality is reserved for internal use. It is not supported for use
* in customer environments and is not subject to the support SLA of official GA
* features. If set to true
, the analysis will automatically find
* correlations between metrics for a given by field value and report anomalies
* when those correlations cease to hold. For example, suppose CPU and memory
* usage on host A is usually highly correlated with the same metrics on host B.
* Perhaps this correlation occurs because they are running a load-balanced
* application. If you enable this property, anomalies will be reported when,
* for example, CPU usage on host A is high and the value of CPU usage on host B
* is low. That is to say, you’ll see an anomaly when the CPU of host A is
* unusual given the CPU of host B. To use the
* multivariate_by_fields
property, you must also specify
* by_field_name
in your detector.
*
* API name: {@code multivariate_by_fields}
*/
@Nullable
public final Boolean multivariateByFields() {
return this.multivariateByFields;
}
/**
* Settings related to how categorization interacts with partition fields.
*
* API name: {@code per_partition_categorization}
*/
@Nullable
public final PerPartitionCategorization perPartitionCategorization() {
return this.perPartitionCategorization;
}
/**
* If this property is specified, the data that is fed to the job is expected to
* be pre-summarized. This property value is the name of the field that contains
* the count of raw data points that have been summarized. The same
* summary_count_field_name
applies to all detectors in the job.
* NOTE: The summary_count_field_name
property cannot be used with
* the metric
function.
*
* API name: {@code summary_count_field_name}
*/
@Nullable
public final String summaryCountFieldName() {
return this.summaryCountFieldName;
}
/**
* Serialize this object to JSON.
*/
public void serialize(JsonGenerator generator, JsonpMapper mapper) {
generator.writeStartObject();
serializeInternal(generator, mapper);
generator.writeEnd();
}
protected void serializeInternal(JsonGenerator generator, JsonpMapper mapper) {
generator.writeKey("bucket_span");
generator.write(this.bucketSpan);
if (this.categorizationAnalyzer != null) {
generator.writeKey("categorization_analyzer");
this.categorizationAnalyzer.serialize(generator, mapper);
}
if (this.categorizationFieldName != null) {
generator.writeKey("categorization_field_name");
generator.write(this.categorizationFieldName);
}
if (ApiTypeHelper.isDefined(this.categorizationFilters)) {
generator.writeKey("categorization_filters");
generator.writeStartArray();
for (String item0 : this.categorizationFilters) {
generator.write(item0);
}
generator.writeEnd();
}
if (ApiTypeHelper.isDefined(this.detectors)) {
generator.writeKey("detectors");
generator.writeStartArray();
for (DetectorRead item0 : this.detectors) {
item0.serialize(generator, mapper);
}
generator.writeEnd();
}
if (ApiTypeHelper.isDefined(this.influencers)) {
generator.writeKey("influencers");
generator.writeStartArray();
for (String item0 : this.influencers) {
generator.write(item0);
}
generator.writeEnd();
}
if (this.modelPruneWindow != null) {
generator.writeKey("model_prune_window");
this.modelPruneWindow.serialize(generator, mapper);
}
if (this.latency != null) {
generator.writeKey("latency");
this.latency.serialize(generator, mapper);
}
if (this.multivariateByFields != null) {
generator.writeKey("multivariate_by_fields");
generator.write(this.multivariateByFields);
}
if (this.perPartitionCategorization != null) {
generator.writeKey("per_partition_categorization");
this.perPartitionCategorization.serialize(generator, mapper);
}
if (this.summaryCountFieldName != null) {
generator.writeKey("summary_count_field_name");
generator.write(this.summaryCountFieldName);
}
}
// ---------------------------------------------------------------------------------------------
/**
* Builder for {@link AnalysisConfigRead}.
*/
public static class Builder extends WithJsonObjectBuilderBase
implements
ObjectBuilder {
private String bucketSpan;
@Nullable
private CategorizationAnalyzer categorizationAnalyzer;
@Nullable
private String categorizationFieldName;
@Nullable
private List categorizationFilters;
private List detectors;
private List influencers;
@Nullable
private Time modelPruneWindow;
@Nullable
private Time latency;
@Nullable
private Boolean multivariateByFields;
@Nullable
private PerPartitionCategorization perPartitionCategorization;
@Nullable
private String summaryCountFieldName;
/**
* Required - The size of the interval that the analysis is aggregated into,
* typically between 5m
and 1h
. This value should be
* either a whole number of days or equate to a whole number of buckets in one
* day. If the anomaly detection job uses a datafeed with aggregations, this
* value must also be divisible by the interval of the date histogram
* aggregation.
*
* - @server_default 5m
*
*
* API name: {@code bucket_span}
*/
public final Builder bucketSpan(String value) {
this.bucketSpan = value;
return this;
}
/**
* If categorization_field_name
is specified, you can also define
* the analyzer that is used to interpret the categorization field. This
* property cannot be used at the same time as
* categorization_filters
. The categorization analyzer specifies
* how the categorization_field
is interpreted by the
* categorization process. The categorization_analyzer
field can be
* specified either as a string or as an object. If it is a string, it must
* refer to a built-in analyzer or one added by another plugin.
*
* API name: {@code categorization_analyzer}
*/
public final Builder categorizationAnalyzer(@Nullable CategorizationAnalyzer value) {
this.categorizationAnalyzer = value;
return this;
}
/**
* If categorization_field_name
is specified, you can also define
* the analyzer that is used to interpret the categorization field. This
* property cannot be used at the same time as
* categorization_filters
. The categorization analyzer specifies
* how the categorization_field
is interpreted by the
* categorization process. The categorization_analyzer
field can be
* specified either as a string or as an object. If it is a string, it must
* refer to a built-in analyzer or one added by another plugin.
*
* API name: {@code categorization_analyzer}
*/
public final Builder categorizationAnalyzer(
Function> fn) {
return this.categorizationAnalyzer(fn.apply(new CategorizationAnalyzer.Builder()).build());
}
/**
* If this property is specified, the values of the specified field will be
* categorized. The resulting categories must be used in a detector by setting
* by_field_name
, over_field_name
, or
* partition_field_name
to the keyword mlcategory
.
*
* API name: {@code categorization_field_name}
*/
public final Builder categorizationFieldName(@Nullable String value) {
this.categorizationFieldName = value;
return this;
}
/**
* If categorization_field_name
is specified, you can also define
* optional filters. This property expects an array of regular expressions. The
* expressions are used to filter out matching sequences from the categorization
* field values. You can use this functionality to fine tune the categorization
* by excluding sequences from consideration when categories are defined. For
* example, you can exclude SQL statements that appear in your log files. This
* property cannot be used at the same time as
* categorization_analyzer
. If you only want to define simple
* regular expression filters that are applied prior to tokenization, setting
* this property is the easiest method. If you also want to customize the
* tokenizer or post-tokenization filtering, use the
* categorization_analyzer
property instead and include the filters
* as pattern_replace character filters. The effect is exactly the same.
*
* API name: {@code categorization_filters}
*
* Adds all elements of list
to categorizationFilters
.
*/
public final Builder categorizationFilters(List list) {
this.categorizationFilters = _listAddAll(this.categorizationFilters, list);
return this;
}
/**
* If categorization_field_name
is specified, you can also define
* optional filters. This property expects an array of regular expressions. The
* expressions are used to filter out matching sequences from the categorization
* field values. You can use this functionality to fine tune the categorization
* by excluding sequences from consideration when categories are defined. For
* example, you can exclude SQL statements that appear in your log files. This
* property cannot be used at the same time as
* categorization_analyzer
. If you only want to define simple
* regular expression filters that are applied prior to tokenization, setting
* this property is the easiest method. If you also want to customize the
* tokenizer or post-tokenization filtering, use the
* categorization_analyzer
property instead and include the filters
* as pattern_replace character filters. The effect is exactly the same.
*
* API name: {@code categorization_filters}
*
* Adds one or more values to categorizationFilters
.
*/
public final Builder categorizationFilters(String value, String... values) {
this.categorizationFilters = _listAdd(this.categorizationFilters, value, values);
return this;
}
/**
* Required - Detector configuration objects specify which data fields a job
* analyzes. They also specify which analytical functions are used. You can
* specify multiple detectors for a job. If the detectors array does not contain
* at least one detector, no analysis can occur and an error is returned.
*
* API name: {@code detectors}
*
* Adds all elements of list
to detectors
.
*/
public final Builder detectors(List list) {
this.detectors = _listAddAll(this.detectors, list);
return this;
}
/**
* Required - Detector configuration objects specify which data fields a job
* analyzes. They also specify which analytical functions are used. You can
* specify multiple detectors for a job. If the detectors array does not contain
* at least one detector, no analysis can occur and an error is returned.
*
* API name: {@code detectors}
*
* Adds one or more values to detectors
.
*/
public final Builder detectors(DetectorRead value, DetectorRead... values) {
this.detectors = _listAdd(this.detectors, value, values);
return this;
}
/**
* Required - Detector configuration objects specify which data fields a job
* analyzes. They also specify which analytical functions are used. You can
* specify multiple detectors for a job. If the detectors array does not contain
* at least one detector, no analysis can occur and an error is returned.
*
* API name: {@code detectors}
*
* Adds a value to detectors
using a builder lambda.
*/
public final Builder detectors(Function> fn) {
return detectors(fn.apply(new DetectorRead.Builder()).build());
}
/**
* Required - A comma separated list of influencer field names. Typically these
* can be the by, over, or partition fields that are used in the detector
* configuration. You might also want to use a field name that is not
* specifically named in a detector, but is available as part of the input data.
* When you use multiple detectors, the use of influencers is recommended as it
* aggregates results for each influencer entity.
*
* API name: {@code influencers}
*
* Adds all elements of list
to influencers
.
*/
public final Builder influencers(List list) {
this.influencers = _listAddAll(this.influencers, list);
return this;
}
/**
* Required - A comma separated list of influencer field names. Typically these
* can be the by, over, or partition fields that are used in the detector
* configuration. You might also want to use a field name that is not
* specifically named in a detector, but is available as part of the input data.
* When you use multiple detectors, the use of influencers is recommended as it
* aggregates results for each influencer entity.
*
* API name: {@code influencers}
*
* Adds one or more values to influencers
.
*/
public final Builder influencers(String value, String... values) {
this.influencers = _listAdd(this.influencers, value, values);
return this;
}
/**
* Advanced configuration option. Affects the pruning of models that have not
* been updated for the given time duration. The value must be set to a multiple
* of the bucket_span
. If set too low, important information may be
* removed from the model. For jobs created in 8.1 and later, the default value
* is the greater of 30d
or 20 times bucket_span
.
*
* API name: {@code model_prune_window}
*/
public final Builder modelPruneWindow(@Nullable Time value) {
this.modelPruneWindow = value;
return this;
}
/**
* Advanced configuration option. Affects the pruning of models that have not
* been updated for the given time duration. The value must be set to a multiple
* of the bucket_span
. If set too low, important information may be
* removed from the model. For jobs created in 8.1 and later, the default value
* is the greater of 30d
or 20 times bucket_span
.
*
* API name: {@code model_prune_window}
*/
public final Builder modelPruneWindow(Function> fn) {
return this.modelPruneWindow(fn.apply(new Time.Builder()).build());
}
/**
* The size of the window in which to expect data that is out of time order. If
* you specify a non-zero value, it must be greater than or equal to one second.
* NOTE: Latency is applicable only when you send data by using the post data
* API.
*
* API name: {@code latency}
*/
public final Builder latency(@Nullable Time value) {
this.latency = value;
return this;
}
/**
* The size of the window in which to expect data that is out of time order. If
* you specify a non-zero value, it must be greater than or equal to one second.
* NOTE: Latency is applicable only when you send data by using the post data
* API.
*
* API name: {@code latency}
*/
public final Builder latency(Function> fn) {
return this.latency(fn.apply(new Time.Builder()).build());
}
/**
* This functionality is reserved for internal use. It is not supported for use
* in customer environments and is not subject to the support SLA of official GA
* features. If set to true
, the analysis will automatically find
* correlations between metrics for a given by field value and report anomalies
* when those correlations cease to hold. For example, suppose CPU and memory
* usage on host A is usually highly correlated with the same metrics on host B.
* Perhaps this correlation occurs because they are running a load-balanced
* application. If you enable this property, anomalies will be reported when,
* for example, CPU usage on host A is high and the value of CPU usage on host B
* is low. That is to say, you’ll see an anomaly when the CPU of host A is
* unusual given the CPU of host B. To use the
* multivariate_by_fields
property, you must also specify
* by_field_name
in your detector.
*
* API name: {@code multivariate_by_fields}
*/
public final Builder multivariateByFields(@Nullable Boolean value) {
this.multivariateByFields = value;
return this;
}
/**
* Settings related to how categorization interacts with partition fields.
*
* API name: {@code per_partition_categorization}
*/
public final Builder perPartitionCategorization(@Nullable PerPartitionCategorization value) {
this.perPartitionCategorization = value;
return this;
}
/**
* Settings related to how categorization interacts with partition fields.
*
* API name: {@code per_partition_categorization}
*/
public final Builder perPartitionCategorization(
Function> fn) {
return this.perPartitionCategorization(fn.apply(new PerPartitionCategorization.Builder()).build());
}
/**
* If this property is specified, the data that is fed to the job is expected to
* be pre-summarized. This property value is the name of the field that contains
* the count of raw data points that have been summarized. The same
* summary_count_field_name
applies to all detectors in the job.
* NOTE: The summary_count_field_name
property cannot be used with
* the metric
function.
*
* API name: {@code summary_count_field_name}
*/
public final Builder summaryCountFieldName(@Nullable String value) {
this.summaryCountFieldName = value;
return this;
}
@Override
protected Builder self() {
return this;
}
/**
* Builds a {@link AnalysisConfigRead}.
*
* @throws NullPointerException
* if some of the required fields are null.
*/
public AnalysisConfigRead build() {
_checkSingleUse();
return new AnalysisConfigRead(this);
}
}
// ---------------------------------------------------------------------------------------------
/**
* Json deserializer for {@link AnalysisConfigRead}
*/
public static final JsonpDeserializer _DESERIALIZER = ObjectBuilderDeserializer
.lazy(Builder::new, AnalysisConfigRead::setupAnalysisConfigReadDeserializer);
protected static void setupAnalysisConfigReadDeserializer(ObjectDeserializer op) {
op.add(Builder::bucketSpan, JsonpDeserializer.stringDeserializer(), "bucket_span");
op.add(Builder::categorizationAnalyzer, CategorizationAnalyzer._DESERIALIZER, "categorization_analyzer");
op.add(Builder::categorizationFieldName, JsonpDeserializer.stringDeserializer(), "categorization_field_name");
op.add(Builder::categorizationFilters,
JsonpDeserializer.arrayDeserializer(JsonpDeserializer.stringDeserializer()), "categorization_filters");
op.add(Builder::detectors, JsonpDeserializer.arrayDeserializer(DetectorRead._DESERIALIZER), "detectors");
op.add(Builder::influencers, JsonpDeserializer.arrayDeserializer(JsonpDeserializer.stringDeserializer()),
"influencers");
op.add(Builder::modelPruneWindow, Time._DESERIALIZER, "model_prune_window");
op.add(Builder::latency, Time._DESERIALIZER, "latency");
op.add(Builder::multivariateByFields, JsonpDeserializer.booleanDeserializer(), "multivariate_by_fields");
op.add(Builder::perPartitionCategorization, PerPartitionCategorization._DESERIALIZER,
"per_partition_categorization");
op.add(Builder::summaryCountFieldName, JsonpDeserializer.stringDeserializer(), "summary_count_field_name");
}
}