co.elastic.clients.elasticsearch.ml.BucketInfluencer Maven / Gradle / Ivy
/*
* Licensed to Elasticsearch B.V. under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch B.V. licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
//----------------------------------------------------
// THIS CODE IS GENERATED. MANUAL EDITS WILL BE LOST.
//----------------------------------------------------
package co.elastic.clients.elasticsearch.ml;
import co.elastic.clients.elasticsearch._types.Time;
import co.elastic.clients.json.JsonpDeserializable;
import co.elastic.clients.json.JsonpDeserializer;
import co.elastic.clients.json.JsonpMapper;
import co.elastic.clients.json.JsonpSerializable;
import co.elastic.clients.json.ObjectBuilderDeserializer;
import co.elastic.clients.json.ObjectDeserializer;
import co.elastic.clients.util.ApiTypeHelper;
import co.elastic.clients.util.ObjectBuilder;
import co.elastic.clients.util.WithJsonObjectBuilderBase;
import jakarta.json.stream.JsonGenerator;
import java.lang.Boolean;
import java.lang.Double;
import java.lang.Long;
import java.lang.String;
import java.util.Objects;
import java.util.function.Function;
import javax.annotation.Nullable;
// typedef: ml._types.BucketInfluencer
/**
*
* @see API
* specification
*/
@JsonpDeserializable
public class BucketInfluencer implements JsonpSerializable {
private final double anomalyScore;
private final long bucketSpan;
private final String influencerFieldName;
private final double initialAnomalyScore;
private final boolean isInterim;
private final String jobId;
private final double probability;
private final double rawAnomalyScore;
private final String resultType;
private final Time timestamp;
// ---------------------------------------------------------------------------------------------
private BucketInfluencer(Builder builder) {
this.anomalyScore = ApiTypeHelper.requireNonNull(builder.anomalyScore, this, "anomalyScore");
this.bucketSpan = ApiTypeHelper.requireNonNull(builder.bucketSpan, this, "bucketSpan");
this.influencerFieldName = ApiTypeHelper.requireNonNull(builder.influencerFieldName, this,
"influencerFieldName");
this.initialAnomalyScore = ApiTypeHelper.requireNonNull(builder.initialAnomalyScore, this,
"initialAnomalyScore");
this.isInterim = ApiTypeHelper.requireNonNull(builder.isInterim, this, "isInterim");
this.jobId = ApiTypeHelper.requireNonNull(builder.jobId, this, "jobId");
this.probability = ApiTypeHelper.requireNonNull(builder.probability, this, "probability");
this.rawAnomalyScore = ApiTypeHelper.requireNonNull(builder.rawAnomalyScore, this, "rawAnomalyScore");
this.resultType = ApiTypeHelper.requireNonNull(builder.resultType, this, "resultType");
this.timestamp = ApiTypeHelper.requireNonNull(builder.timestamp, this, "timestamp");
}
public static BucketInfluencer of(Function> fn) {
return fn.apply(new Builder()).build();
}
/**
* Required - A normalized score between 0-100, which is calculated for each
* bucket influencer. This score might be updated as newer data is analyzed.
*
* API name: {@code anomaly_score}
*/
public final double anomalyScore() {
return this.anomalyScore;
}
/**
* Required - The length of the bucket in seconds. This value matches the bucket
* span that is specified in the job.
*
* API name: {@code bucket_span}
*/
public final long bucketSpan() {
return this.bucketSpan;
}
/**
* Required - The field name of the influencer.
*
* API name: {@code influencer_field_name}
*/
public final String influencerFieldName() {
return this.influencerFieldName;
}
/**
* Required - The score between 0-100 for each bucket influencer. This score is
* the initial value that was calculated at the time the bucket was processed.
*
* API name: {@code initial_anomaly_score}
*/
public final double initialAnomalyScore() {
return this.initialAnomalyScore;
}
/**
* Required - If true, this is an interim result. In other words, the results
* are calculated based on partial input data.
*
* API name: {@code is_interim}
*/
public final boolean isInterim() {
return this.isInterim;
}
/**
* Required - Identifier for the anomaly detection job.
*
* API name: {@code job_id}
*/
public final String jobId() {
return this.jobId;
}
/**
* Required - The probability that the bucket has this behavior, in the range 0
* to 1. This value can be held to a high precision of over 300 decimal places,
* so the anomaly_score
is provided as a human-readable and
* friendly interpretation of this.
*
* API name: {@code probability}
*/
public final double probability() {
return this.probability;
}
/**
* Required - Internal.
*
* API name: {@code raw_anomaly_score}
*/
public final double rawAnomalyScore() {
return this.rawAnomalyScore;
}
/**
* Required - Internal. This value is always set to
* bucket_influencer
.
*
* API name: {@code result_type}
*/
public final String resultType() {
return this.resultType;
}
/**
* Required - The start time of the bucket for which these results were
* calculated.
*
* API name: {@code timestamp}
*/
public final Time timestamp() {
return this.timestamp;
}
/**
* Serialize this object to JSON.
*/
public void serialize(JsonGenerator generator, JsonpMapper mapper) {
generator.writeStartObject();
serializeInternal(generator, mapper);
generator.writeEnd();
}
protected void serializeInternal(JsonGenerator generator, JsonpMapper mapper) {
generator.writeKey("anomaly_score");
generator.write(this.anomalyScore);
generator.writeKey("bucket_span");
generator.write(this.bucketSpan);
generator.writeKey("influencer_field_name");
generator.write(this.influencerFieldName);
generator.writeKey("initial_anomaly_score");
generator.write(this.initialAnomalyScore);
generator.writeKey("is_interim");
generator.write(this.isInterim);
generator.writeKey("job_id");
generator.write(this.jobId);
generator.writeKey("probability");
generator.write(this.probability);
generator.writeKey("raw_anomaly_score");
generator.write(this.rawAnomalyScore);
generator.writeKey("result_type");
generator.write(this.resultType);
generator.writeKey("timestamp");
this.timestamp.serialize(generator, mapper);
}
// ---------------------------------------------------------------------------------------------
/**
* Builder for {@link BucketInfluencer}.
*/
public static class Builder extends WithJsonObjectBuilderBase implements ObjectBuilder {
private Double anomalyScore;
private Long bucketSpan;
private String influencerFieldName;
private Double initialAnomalyScore;
private Boolean isInterim;
private String jobId;
private Double probability;
private Double rawAnomalyScore;
private String resultType;
private Time timestamp;
/**
* Required - A normalized score between 0-100, which is calculated for each
* bucket influencer. This score might be updated as newer data is analyzed.
*
* API name: {@code anomaly_score}
*/
public final Builder anomalyScore(double value) {
this.anomalyScore = value;
return this;
}
/**
* Required - The length of the bucket in seconds. This value matches the bucket
* span that is specified in the job.
*
* API name: {@code bucket_span}
*/
public final Builder bucketSpan(long value) {
this.bucketSpan = value;
return this;
}
/**
* Required - The field name of the influencer.
*
* API name: {@code influencer_field_name}
*/
public final Builder influencerFieldName(String value) {
this.influencerFieldName = value;
return this;
}
/**
* Required - The score between 0-100 for each bucket influencer. This score is
* the initial value that was calculated at the time the bucket was processed.
*
* API name: {@code initial_anomaly_score}
*/
public final Builder initialAnomalyScore(double value) {
this.initialAnomalyScore = value;
return this;
}
/**
* Required - If true, this is an interim result. In other words, the results
* are calculated based on partial input data.
*
* API name: {@code is_interim}
*/
public final Builder isInterim(boolean value) {
this.isInterim = value;
return this;
}
/**
* Required - Identifier for the anomaly detection job.
*
* API name: {@code job_id}
*/
public final Builder jobId(String value) {
this.jobId = value;
return this;
}
/**
* Required - The probability that the bucket has this behavior, in the range 0
* to 1. This value can be held to a high precision of over 300 decimal places,
* so the anomaly_score
is provided as a human-readable and
* friendly interpretation of this.
*
* API name: {@code probability}
*/
public final Builder probability(double value) {
this.probability = value;
return this;
}
/**
* Required - Internal.
*
* API name: {@code raw_anomaly_score}
*/
public final Builder rawAnomalyScore(double value) {
this.rawAnomalyScore = value;
return this;
}
/**
* Required - Internal. This value is always set to
* bucket_influencer
.
*
* API name: {@code result_type}
*/
public final Builder resultType(String value) {
this.resultType = value;
return this;
}
/**
* Required - The start time of the bucket for which these results were
* calculated.
*
* API name: {@code timestamp}
*/
public final Builder timestamp(Time value) {
this.timestamp = value;
return this;
}
/**
* Required - The start time of the bucket for which these results were
* calculated.
*
* API name: {@code timestamp}
*/
public final Builder timestamp(Function> fn) {
return this.timestamp(fn.apply(new Time.Builder()).build());
}
@Override
protected Builder self() {
return this;
}
/**
* Builds a {@link BucketInfluencer}.
*
* @throws NullPointerException
* if some of the required fields are null.
*/
public BucketInfluencer build() {
_checkSingleUse();
return new BucketInfluencer(this);
}
}
// ---------------------------------------------------------------------------------------------
/**
* Json deserializer for {@link BucketInfluencer}
*/
public static final JsonpDeserializer _DESERIALIZER = ObjectBuilderDeserializer.lazy(Builder::new,
BucketInfluencer::setupBucketInfluencerDeserializer);
protected static void setupBucketInfluencerDeserializer(ObjectDeserializer op) {
op.add(Builder::anomalyScore, JsonpDeserializer.doubleDeserializer(), "anomaly_score");
op.add(Builder::bucketSpan, JsonpDeserializer.longDeserializer(), "bucket_span");
op.add(Builder::influencerFieldName, JsonpDeserializer.stringDeserializer(), "influencer_field_name");
op.add(Builder::initialAnomalyScore, JsonpDeserializer.doubleDeserializer(), "initial_anomaly_score");
op.add(Builder::isInterim, JsonpDeserializer.booleanDeserializer(), "is_interim");
op.add(Builder::jobId, JsonpDeserializer.stringDeserializer(), "job_id");
op.add(Builder::probability, JsonpDeserializer.doubleDeserializer(), "probability");
op.add(Builder::rawAnomalyScore, JsonpDeserializer.doubleDeserializer(), "raw_anomaly_score");
op.add(Builder::resultType, JsonpDeserializer.stringDeserializer(), "result_type");
op.add(Builder::timestamp, Time._DESERIALIZER, "timestamp");
}
}