All Downloads are FREE. Search and download functionalities are using the official Maven repository.

co.elastic.clients.elasticsearch.ml.BucketInfluencer Maven / Gradle / Ivy

/*
 * Licensed to Elasticsearch B.V. under one or more contributor
 * license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright
 * ownership. Elasticsearch B.V. licenses this file to you under
 * the Apache License, Version 2.0 (the "License"); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

//----------------------------------------------------
// THIS CODE IS GENERATED. MANUAL EDITS WILL BE LOST.
//----------------------------------------------------

package co.elastic.clients.elasticsearch.ml;

import co.elastic.clients.elasticsearch._types.Time;
import co.elastic.clients.json.JsonpDeserializable;
import co.elastic.clients.json.JsonpDeserializer;
import co.elastic.clients.json.JsonpMapper;
import co.elastic.clients.json.JsonpSerializable;
import co.elastic.clients.json.ObjectBuilderDeserializer;
import co.elastic.clients.json.ObjectDeserializer;
import co.elastic.clients.util.ApiTypeHelper;
import co.elastic.clients.util.ObjectBuilder;
import co.elastic.clients.util.WithJsonObjectBuilderBase;
import jakarta.json.stream.JsonGenerator;
import java.lang.Boolean;
import java.lang.Double;
import java.lang.Long;
import java.lang.String;
import java.util.Objects;
import java.util.function.Function;
import javax.annotation.Nullable;

// typedef: ml._types.BucketInfluencer

/**
 *
 * @see API
 *      specification
 */
@JsonpDeserializable
public class BucketInfluencer implements JsonpSerializable {
	private final double anomalyScore;

	private final long bucketSpan;

	private final String influencerFieldName;

	private final double initialAnomalyScore;

	private final boolean isInterim;

	private final String jobId;

	private final double probability;

	private final double rawAnomalyScore;

	private final String resultType;

	private final Time timestamp;

	// ---------------------------------------------------------------------------------------------

	private BucketInfluencer(Builder builder) {

		this.anomalyScore = ApiTypeHelper.requireNonNull(builder.anomalyScore, this, "anomalyScore");
		this.bucketSpan = ApiTypeHelper.requireNonNull(builder.bucketSpan, this, "bucketSpan");
		this.influencerFieldName = ApiTypeHelper.requireNonNull(builder.influencerFieldName, this,
				"influencerFieldName");
		this.initialAnomalyScore = ApiTypeHelper.requireNonNull(builder.initialAnomalyScore, this,
				"initialAnomalyScore");
		this.isInterim = ApiTypeHelper.requireNonNull(builder.isInterim, this, "isInterim");
		this.jobId = ApiTypeHelper.requireNonNull(builder.jobId, this, "jobId");
		this.probability = ApiTypeHelper.requireNonNull(builder.probability, this, "probability");
		this.rawAnomalyScore = ApiTypeHelper.requireNonNull(builder.rawAnomalyScore, this, "rawAnomalyScore");
		this.resultType = ApiTypeHelper.requireNonNull(builder.resultType, this, "resultType");
		this.timestamp = ApiTypeHelper.requireNonNull(builder.timestamp, this, "timestamp");

	}

	public static BucketInfluencer of(Function> fn) {
		return fn.apply(new Builder()).build();
	}

	/**
	 * Required - A normalized score between 0-100, which is calculated for each
	 * bucket influencer. This score might be updated as newer data is analyzed.
	 * 

* API name: {@code anomaly_score} */ public final double anomalyScore() { return this.anomalyScore; } /** * Required - The length of the bucket in seconds. This value matches the bucket * span that is specified in the job. *

* API name: {@code bucket_span} */ public final long bucketSpan() { return this.bucketSpan; } /** * Required - The field name of the influencer. *

* API name: {@code influencer_field_name} */ public final String influencerFieldName() { return this.influencerFieldName; } /** * Required - The score between 0-100 for each bucket influencer. This score is * the initial value that was calculated at the time the bucket was processed. *

* API name: {@code initial_anomaly_score} */ public final double initialAnomalyScore() { return this.initialAnomalyScore; } /** * Required - If true, this is an interim result. In other words, the results * are calculated based on partial input data. *

* API name: {@code is_interim} */ public final boolean isInterim() { return this.isInterim; } /** * Required - Identifier for the anomaly detection job. *

* API name: {@code job_id} */ public final String jobId() { return this.jobId; } /** * Required - The probability that the bucket has this behavior, in the range 0 * to 1. This value can be held to a high precision of over 300 decimal places, * so the anomaly_score is provided as a human-readable and * friendly interpretation of this. *

* API name: {@code probability} */ public final double probability() { return this.probability; } /** * Required - Internal. *

* API name: {@code raw_anomaly_score} */ public final double rawAnomalyScore() { return this.rawAnomalyScore; } /** * Required - Internal. This value is always set to * bucket_influencer. *

* API name: {@code result_type} */ public final String resultType() { return this.resultType; } /** * Required - The start time of the bucket for which these results were * calculated. *

* API name: {@code timestamp} */ public final Time timestamp() { return this.timestamp; } /** * Serialize this object to JSON. */ public void serialize(JsonGenerator generator, JsonpMapper mapper) { generator.writeStartObject(); serializeInternal(generator, mapper); generator.writeEnd(); } protected void serializeInternal(JsonGenerator generator, JsonpMapper mapper) { generator.writeKey("anomaly_score"); generator.write(this.anomalyScore); generator.writeKey("bucket_span"); generator.write(this.bucketSpan); generator.writeKey("influencer_field_name"); generator.write(this.influencerFieldName); generator.writeKey("initial_anomaly_score"); generator.write(this.initialAnomalyScore); generator.writeKey("is_interim"); generator.write(this.isInterim); generator.writeKey("job_id"); generator.write(this.jobId); generator.writeKey("probability"); generator.write(this.probability); generator.writeKey("raw_anomaly_score"); generator.write(this.rawAnomalyScore); generator.writeKey("result_type"); generator.write(this.resultType); generator.writeKey("timestamp"); this.timestamp.serialize(generator, mapper); } // --------------------------------------------------------------------------------------------- /** * Builder for {@link BucketInfluencer}. */ public static class Builder extends WithJsonObjectBuilderBase implements ObjectBuilder { private Double anomalyScore; private Long bucketSpan; private String influencerFieldName; private Double initialAnomalyScore; private Boolean isInterim; private String jobId; private Double probability; private Double rawAnomalyScore; private String resultType; private Time timestamp; /** * Required - A normalized score between 0-100, which is calculated for each * bucket influencer. This score might be updated as newer data is analyzed. *

* API name: {@code anomaly_score} */ public final Builder anomalyScore(double value) { this.anomalyScore = value; return this; } /** * Required - The length of the bucket in seconds. This value matches the bucket * span that is specified in the job. *

* API name: {@code bucket_span} */ public final Builder bucketSpan(long value) { this.bucketSpan = value; return this; } /** * Required - The field name of the influencer. *

* API name: {@code influencer_field_name} */ public final Builder influencerFieldName(String value) { this.influencerFieldName = value; return this; } /** * Required - The score between 0-100 for each bucket influencer. This score is * the initial value that was calculated at the time the bucket was processed. *

* API name: {@code initial_anomaly_score} */ public final Builder initialAnomalyScore(double value) { this.initialAnomalyScore = value; return this; } /** * Required - If true, this is an interim result. In other words, the results * are calculated based on partial input data. *

* API name: {@code is_interim} */ public final Builder isInterim(boolean value) { this.isInterim = value; return this; } /** * Required - Identifier for the anomaly detection job. *

* API name: {@code job_id} */ public final Builder jobId(String value) { this.jobId = value; return this; } /** * Required - The probability that the bucket has this behavior, in the range 0 * to 1. This value can be held to a high precision of over 300 decimal places, * so the anomaly_score is provided as a human-readable and * friendly interpretation of this. *

* API name: {@code probability} */ public final Builder probability(double value) { this.probability = value; return this; } /** * Required - Internal. *

* API name: {@code raw_anomaly_score} */ public final Builder rawAnomalyScore(double value) { this.rawAnomalyScore = value; return this; } /** * Required - Internal. This value is always set to * bucket_influencer. *

* API name: {@code result_type} */ public final Builder resultType(String value) { this.resultType = value; return this; } /** * Required - The start time of the bucket for which these results were * calculated. *

* API name: {@code timestamp} */ public final Builder timestamp(Time value) { this.timestamp = value; return this; } /** * Required - The start time of the bucket for which these results were * calculated. *

* API name: {@code timestamp} */ public final Builder timestamp(Function> fn) { return this.timestamp(fn.apply(new Time.Builder()).build()); } @Override protected Builder self() { return this; } /** * Builds a {@link BucketInfluencer}. * * @throws NullPointerException * if some of the required fields are null. */ public BucketInfluencer build() { _checkSingleUse(); return new BucketInfluencer(this); } } // --------------------------------------------------------------------------------------------- /** * Json deserializer for {@link BucketInfluencer} */ public static final JsonpDeserializer _DESERIALIZER = ObjectBuilderDeserializer.lazy(Builder::new, BucketInfluencer::setupBucketInfluencerDeserializer); protected static void setupBucketInfluencerDeserializer(ObjectDeserializer op) { op.add(Builder::anomalyScore, JsonpDeserializer.doubleDeserializer(), "anomaly_score"); op.add(Builder::bucketSpan, JsonpDeserializer.longDeserializer(), "bucket_span"); op.add(Builder::influencerFieldName, JsonpDeserializer.stringDeserializer(), "influencer_field_name"); op.add(Builder::initialAnomalyScore, JsonpDeserializer.doubleDeserializer(), "initial_anomaly_score"); op.add(Builder::isInterim, JsonpDeserializer.booleanDeserializer(), "is_interim"); op.add(Builder::jobId, JsonpDeserializer.stringDeserializer(), "job_id"); op.add(Builder::probability, JsonpDeserializer.doubleDeserializer(), "probability"); op.add(Builder::rawAnomalyScore, JsonpDeserializer.doubleDeserializer(), "raw_anomaly_score"); op.add(Builder::resultType, JsonpDeserializer.stringDeserializer(), "result_type"); op.add(Builder::timestamp, Time._DESERIALIZER, "timestamp"); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy