All Downloads are FREE. Search and download functionalities are using the official Maven repository.

co.elastic.clients.elasticsearch.ml.DataframeAnalysisRegression Maven / Gradle / Ivy

There is a newer version: 8.17.0
Show newest version
/*
 * Licensed to Elasticsearch B.V. under one or more contributor
 * license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright
 * ownership. Elasticsearch B.V. licenses this file to you under
 * the Apache License, Version 2.0 (the "License"); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

//----------------------------------------------------
// THIS CODE IS GENERATED. MANUAL EDITS WILL BE LOST.
//----------------------------------------------------

package co.elastic.clients.elasticsearch.ml;

import co.elastic.clients.json.JsonpDeserializable;
import co.elastic.clients.json.JsonpDeserializer;
import co.elastic.clients.json.JsonpMapper;
import co.elastic.clients.json.ObjectBuilderDeserializer;
import co.elastic.clients.json.ObjectDeserializer;
import co.elastic.clients.util.ObjectBuilder;
import jakarta.json.stream.JsonGenerator;
import java.lang.Double;
import java.lang.String;
import java.util.Objects;
import java.util.function.Function;
import javax.annotation.Nullable;

// typedef: ml._types.DataframeAnalysisRegression

/**
 *
 * @see API
 *      specification
 */
@JsonpDeserializable
public class DataframeAnalysisRegression extends DataframeAnalysisBase implements DataframeAnalysisVariant {
	@Nullable
	private final String lossFunction;

	@Nullable
	private final Double lossFunctionParameter;

	// ---------------------------------------------------------------------------------------------

	private DataframeAnalysisRegression(Builder builder) {
		super(builder);

		this.lossFunction = builder.lossFunction;
		this.lossFunctionParameter = builder.lossFunctionParameter;

	}

	public static DataframeAnalysisRegression of(Function> fn) {
		return fn.apply(new Builder()).build();
	}

	/**
	 * DataframeAnalysis variant kind.
	 */
	@Override
	public DataframeAnalysis.Kind _dataframeAnalysisKind() {
		return DataframeAnalysis.Kind.Regression;
	}

	/**
	 * The loss function used during regression. Available options are
	 * mse (mean squared error), msle (mean squared
	 * logarithmic error), huber (Pseudo-Huber loss).
	 * 

* API name: {@code loss_function} */ @Nullable public final String lossFunction() { return this.lossFunction; } /** * A positive number that is used as a parameter to the * loss_function. *

* API name: {@code loss_function_parameter} */ @Nullable public final Double lossFunctionParameter() { return this.lossFunctionParameter; } protected void serializeInternal(JsonGenerator generator, JsonpMapper mapper) { super.serializeInternal(generator, mapper); if (this.lossFunction != null) { generator.writeKey("loss_function"); generator.write(this.lossFunction); } if (this.lossFunctionParameter != null) { generator.writeKey("loss_function_parameter"); generator.write(this.lossFunctionParameter); } } // --------------------------------------------------------------------------------------------- /** * Builder for {@link DataframeAnalysisRegression}. */ public static class Builder extends DataframeAnalysisBase.AbstractBuilder implements ObjectBuilder { @Nullable private String lossFunction; @Nullable private Double lossFunctionParameter; /** * The loss function used during regression. Available options are * mse (mean squared error), msle (mean squared * logarithmic error), huber (Pseudo-Huber loss). *

* API name: {@code loss_function} */ public final Builder lossFunction(@Nullable String value) { this.lossFunction = value; return this; } /** * A positive number that is used as a parameter to the * loss_function. *

* API name: {@code loss_function_parameter} */ public final Builder lossFunctionParameter(@Nullable Double value) { this.lossFunctionParameter = value; return this; } @Override protected Builder self() { return this; } /** * Builds a {@link DataframeAnalysisRegression}. * * @throws NullPointerException * if some of the required fields are null. */ public DataframeAnalysisRegression build() { _checkSingleUse(); return new DataframeAnalysisRegression(this); } } // --------------------------------------------------------------------------------------------- /** * Json deserializer for {@link DataframeAnalysisRegression} */ public static final JsonpDeserializer _DESERIALIZER = ObjectBuilderDeserializer .lazy(Builder::new, DataframeAnalysisRegression::setupDataframeAnalysisRegressionDeserializer); protected static void setupDataframeAnalysisRegressionDeserializer( ObjectDeserializer op) { DataframeAnalysisBase.setupDataframeAnalysisBaseDeserializer(op); op.add(Builder::lossFunction, JsonpDeserializer.stringDeserializer(), "loss_function"); op.add(Builder::lossFunctionParameter, JsonpDeserializer.doubleDeserializer(), "loss_function_parameter"); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy