co.elastic.clients.elasticsearch.ml.DataframeEvaluationRegression Maven / Gradle / Ivy
/*
* Licensed to Elasticsearch B.V. under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch B.V. licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
//----------------------------------------------------
// THIS CODE IS GENERATED. MANUAL EDITS WILL BE LOST.
//----------------------------------------------------
package co.elastic.clients.elasticsearch.ml;
import co.elastic.clients.json.JsonpDeserializable;
import co.elastic.clients.json.JsonpDeserializer;
import co.elastic.clients.json.JsonpMapper;
import co.elastic.clients.json.JsonpSerializable;
import co.elastic.clients.json.ObjectBuilderDeserializer;
import co.elastic.clients.json.ObjectDeserializer;
import co.elastic.clients.util.ApiTypeHelper;
import co.elastic.clients.util.ObjectBuilder;
import co.elastic.clients.util.WithJsonObjectBuilderBase;
import jakarta.json.stream.JsonGenerator;
import java.lang.String;
import java.util.Objects;
import java.util.function.Function;
import javax.annotation.Nullable;
// typedef: ml._types.DataframeEvaluationRegression
/**
*
* @see API
* specification
*/
@JsonpDeserializable
public class DataframeEvaluationRegression implements DataframeEvaluationVariant, JsonpSerializable {
private final String actualField;
private final String predictedField;
@Nullable
private final DataframeEvaluationRegressionMetrics metrics;
// ---------------------------------------------------------------------------------------------
private DataframeEvaluationRegression(Builder builder) {
this.actualField = ApiTypeHelper.requireNonNull(builder.actualField, this, "actualField");
this.predictedField = ApiTypeHelper.requireNonNull(builder.predictedField, this, "predictedField");
this.metrics = builder.metrics;
}
public static DataframeEvaluationRegression of(Function> fn) {
return fn.apply(new Builder()).build();
}
/**
* DataframeEvaluation variant kind.
*/
@Override
public DataframeEvaluation.Kind _dataframeEvaluationKind() {
return DataframeEvaluation.Kind.Regression;
}
/**
* Required - The field of the index which contains the ground truth. The data
* type of this field must be numerical.
*
* API name: {@code actual_field}
*/
public final String actualField() {
return this.actualField;
}
/**
* Required - The field in the index that contains the predicted value, in other
* words the results of the regression analysis.
*
* API name: {@code predicted_field}
*/
public final String predictedField() {
return this.predictedField;
}
/**
* Specifies the metrics that are used for the evaluation. For more information
* on mse, msle, and huber, consult the Jupyter notebook on regression loss
* functions.
*
* API name: {@code metrics}
*/
@Nullable
public final DataframeEvaluationRegressionMetrics metrics() {
return this.metrics;
}
/**
* Serialize this object to JSON.
*/
public void serialize(JsonGenerator generator, JsonpMapper mapper) {
generator.writeStartObject();
serializeInternal(generator, mapper);
generator.writeEnd();
}
protected void serializeInternal(JsonGenerator generator, JsonpMapper mapper) {
generator.writeKey("actual_field");
generator.write(this.actualField);
generator.writeKey("predicted_field");
generator.write(this.predictedField);
if (this.metrics != null) {
generator.writeKey("metrics");
this.metrics.serialize(generator, mapper);
}
}
// ---------------------------------------------------------------------------------------------
/**
* Builder for {@link DataframeEvaluationRegression}.
*/
public static class Builder extends WithJsonObjectBuilderBase
implements
ObjectBuilder {
private String actualField;
private String predictedField;
@Nullable
private DataframeEvaluationRegressionMetrics metrics;
/**
* Required - The field of the index which contains the ground truth. The data
* type of this field must be numerical.
*
* API name: {@code actual_field}
*/
public final Builder actualField(String value) {
this.actualField = value;
return this;
}
/**
* Required - The field in the index that contains the predicted value, in other
* words the results of the regression analysis.
*
* API name: {@code predicted_field}
*/
public final Builder predictedField(String value) {
this.predictedField = value;
return this;
}
/**
* Specifies the metrics that are used for the evaluation. For more information
* on mse, msle, and huber, consult the Jupyter notebook on regression loss
* functions.
*
* API name: {@code metrics}
*/
public final Builder metrics(@Nullable DataframeEvaluationRegressionMetrics value) {
this.metrics = value;
return this;
}
/**
* Specifies the metrics that are used for the evaluation. For more information
* on mse, msle, and huber, consult the Jupyter notebook on regression loss
* functions.
*
* API name: {@code metrics}
*/
public final Builder metrics(
Function> fn) {
return this.metrics(fn.apply(new DataframeEvaluationRegressionMetrics.Builder()).build());
}
@Override
protected Builder self() {
return this;
}
/**
* Builds a {@link DataframeEvaluationRegression}.
*
* @throws NullPointerException
* if some of the required fields are null.
*/
public DataframeEvaluationRegression build() {
_checkSingleUse();
return new DataframeEvaluationRegression(this);
}
}
// ---------------------------------------------------------------------------------------------
/**
* Json deserializer for {@link DataframeEvaluationRegression}
*/
public static final JsonpDeserializer _DESERIALIZER = ObjectBuilderDeserializer
.lazy(Builder::new, DataframeEvaluationRegression::setupDataframeEvaluationRegressionDeserializer);
protected static void setupDataframeEvaluationRegressionDeserializer(
ObjectDeserializer op) {
op.add(Builder::actualField, JsonpDeserializer.stringDeserializer(), "actual_field");
op.add(Builder::predictedField, JsonpDeserializer.stringDeserializer(), "predicted_field");
op.add(Builder::metrics, DataframeEvaluationRegressionMetrics._DESERIALIZER, "metrics");
}
}