android.support.v7.util.DiffUtil Maven / Gradle / Ivy
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.support.v7.util;
import android.support.annotation.Nullable;
import android.support.annotation.VisibleForTesting;
import android.support.v7.widget.RecyclerView;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
/**
* DiffUtil is a utility class that can calculate the difference between two lists and output a
* list of update operations that converts the first list into the second one.
*
* It can be used to calculate updates for a RecyclerView Adapter.
*
* DiffUtil uses Eugene W. Myers's difference algorithm to calculate the minimal number of updates
* to convert one list into another. Myers's algorithm does not handle items that are moved so
* DiffUtil runs a second pass on the result to detect items that were moved.
*
* If the lists are large, this operation may take significant time so you are advised to run this
* on a background thread, get the {@link DiffResult} then apply it on the RecyclerView on the main
* thread.
*
* This algorithm is optimized for space and uses O(N) space to find the minimal
* number of addition and removal operations between the two lists. It has O(N + D^2) expected time
* performance where D is the length of the edit script.
*
* If move detection is enabled, it takes an additional O(N^2) time where N is the total number of
* added and removed items. If your lists are already sorted by the same constraint (e.g. a created
* timestamp for a list of posts), you can disable move detection to improve performance.
*
* The actual runtime of the algorithm significantly depends on the number of changes in the list
* and the cost of your comparison methods. Below are some average run times for reference:
* (The test list is composed of random UUID Strings and the tests are run on Nexus 5X with M)
*
* - 100 items and 10 modifications: avg: 0.39 ms, median: 0.35 ms
*
- 100 items and 100 modifications: 3.82 ms, median: 3.75 ms
*
- 100 items and 100 modifications without moves: 2.09 ms, median: 2.06 ms
*
- 1000 items and 50 modifications: avg: 4.67 ms, median: 4.59 ms
*
- 1000 items and 50 modifications without moves: avg: 3.59 ms, median: 3.50 ms
*
- 1000 items and 200 modifications: 27.07 ms, median: 26.92 ms
*
- 1000 items and 200 modifications without moves: 13.54 ms, median: 13.36 ms
*
*
* Due to implementation constraints, the max size of the list can be 2^26.
*/
public class DiffUtil {
private DiffUtil() {
// utility class, no instance.
}
private static final Comparator SNAKE_COMPARATOR = new Comparator() {
@Override
public int compare(Snake o1, Snake o2) {
int cmpX = o1.x - o2.x;
return cmpX == 0 ? o1.y - o2.y : cmpX;
}
};
// Myers' algorithm uses two lists as axis labels. In DiffUtil's implementation, `x` axis is
// used for old list and `y` axis is used for new list.
/**
* Calculates the list of update operations that can covert one list into the other one.
*
* @param cb The callback that acts as a gateway to the backing list data
*
* @return A DiffResult that contains the information about the edit sequence to convert the
* old list into the new list.
*/
public static DiffResult calculateDiff(Callback cb) {
return calculateDiff(cb, true);
}
/**
* Calculates the list of update operations that can covert one list into the other one.
*
* If your old and new lists are sorted by the same constraint and items never move (swap
* positions), you can disable move detection which takes O(N^2)
time where
* N is the number of added, moved, removed items.
*
* @param cb The callback that acts as a gateway to the backing list data
* @param detectMoves True if DiffUtil should try to detect moved items, false otherwise.
*
* @return A DiffResult that contains the information about the edit sequence to convert the
* old list into the new list.
*/
public static DiffResult calculateDiff(Callback cb, boolean detectMoves) {
final int oldSize = cb.getOldListSize();
final int newSize = cb.getNewListSize();
final List snakes = new ArrayList<>();
// instead of a recursive implementation, we keep our own stack to avoid potential stack
// overflow exceptions
final List stack = new ArrayList<>();
stack.add(new Range(0, oldSize, 0, newSize));
final int max = oldSize + newSize + Math.abs(oldSize - newSize);
// allocate forward and backward k-lines. K lines are diagonal lines in the matrix. (see the
// paper for details)
// These arrays lines keep the max reachable position for each k-line.
final int[] forward = new int[max * 2];
final int[] backward = new int[max * 2];
// We pool the ranges to avoid allocations for each recursive call.
final List rangePool = new ArrayList<>();
while (!stack.isEmpty()) {
final Range range = stack.remove(stack.size() - 1);
final Snake snake = diffPartial(cb, range.oldListStart, range.oldListEnd,
range.newListStart, range.newListEnd, forward, backward, max);
if (snake != null) {
if (snake.size > 0) {
snakes.add(snake);
}
// offset the snake to convert its coordinates from the Range's area to global
snake.x += range.oldListStart;
snake.y += range.newListStart;
// add new ranges for left and right
final Range left = rangePool.isEmpty() ? new Range() : rangePool.remove(
rangePool.size() - 1);
left.oldListStart = range.oldListStart;
left.newListStart = range.newListStart;
if (snake.reverse) {
left.oldListEnd = snake.x;
left.newListEnd = snake.y;
} else {
if (snake.removal) {
left.oldListEnd = snake.x - 1;
left.newListEnd = snake.y;
} else {
left.oldListEnd = snake.x;
left.newListEnd = snake.y - 1;
}
}
stack.add(left);
// re-use range for right
//noinspection UnnecessaryLocalVariable
final Range right = range;
if (snake.reverse) {
if (snake.removal) {
right.oldListStart = snake.x + snake.size + 1;
right.newListStart = snake.y + snake.size;
} else {
right.oldListStart = snake.x + snake.size;
right.newListStart = snake.y + snake.size + 1;
}
} else {
right.oldListStart = snake.x + snake.size;
right.newListStart = snake.y + snake.size;
}
stack.add(right);
} else {
rangePool.add(range);
}
}
// sort snakes
Collections.sort(snakes, SNAKE_COMPARATOR);
return new DiffResult(cb, snakes, forward, backward, detectMoves);
}
private static Snake diffPartial(Callback cb, int startOld, int endOld,
int startNew, int endNew, int[] forward, int[] backward, int kOffset) {
final int oldSize = endOld - startOld;
final int newSize = endNew - startNew;
if (endOld - startOld < 1 || endNew - startNew < 1) {
return null;
}
final int delta = oldSize - newSize;
final int dLimit = (oldSize + newSize + 1) / 2;
Arrays.fill(forward, kOffset - dLimit - 1, kOffset + dLimit + 1, 0);
Arrays.fill(backward, kOffset - dLimit - 1 + delta, kOffset + dLimit + 1 + delta, oldSize);
final boolean checkInFwd = delta % 2 != 0;
for (int d = 0; d <= dLimit; d++) {
for (int k = -d; k <= d; k += 2) {
// find forward path
// we can reach k from k - 1 or k + 1. Check which one is further in the graph
int x;
final boolean removal;
if (k == -d || k != d && forward[kOffset + k - 1] < forward[kOffset + k + 1]) {
x = forward[kOffset + k + 1];
removal = false;
} else {
x = forward[kOffset + k - 1] + 1;
removal = true;
}
// set y based on x
int y = x - k;
// move diagonal as long as items match
while (x < oldSize && y < newSize
&& cb.areItemsTheSame(startOld + x, startNew + y)) {
x++;
y++;
}
forward[kOffset + k] = x;
if (checkInFwd && k >= delta - d + 1 && k <= delta + d - 1) {
if (forward[kOffset + k] >= backward[kOffset + k]) {
Snake outSnake = new Snake();
outSnake.x = backward[kOffset + k];
outSnake.y = outSnake.x - k;
outSnake.size = forward[kOffset + k] - backward[kOffset + k];
outSnake.removal = removal;
outSnake.reverse = false;
return outSnake;
}
}
}
for (int k = -d; k <= d; k += 2) {
// find reverse path at k + delta, in reverse
final int backwardK = k + delta;
int x;
final boolean removal;
if (backwardK == d + delta || backwardK != -d + delta
&& backward[kOffset + backwardK - 1] < backward[kOffset + backwardK + 1]) {
x = backward[kOffset + backwardK - 1];
removal = false;
} else {
x = backward[kOffset + backwardK + 1] - 1;
removal = true;
}
// set y based on x
int y = x - backwardK;
// move diagonal as long as items match
while (x > 0 && y > 0
&& cb.areItemsTheSame(startOld + x - 1, startNew + y - 1)) {
x--;
y--;
}
backward[kOffset + backwardK] = x;
if (!checkInFwd && k + delta >= -d && k + delta <= d) {
if (forward[kOffset + backwardK] >= backward[kOffset + backwardK]) {
Snake outSnake = new Snake();
outSnake.x = backward[kOffset + backwardK];
outSnake.y = outSnake.x - backwardK;
outSnake.size =
forward[kOffset + backwardK] - backward[kOffset + backwardK];
outSnake.removal = removal;
outSnake.reverse = true;
return outSnake;
}
}
}
}
throw new IllegalStateException("DiffUtil hit an unexpected case while trying to calculate"
+ " the optimal path. Please make sure your data is not changing during the"
+ " diff calculation.");
}
/**
* A Callback class used by DiffUtil while calculating the diff between two lists.
*/
public abstract static class Callback {
/**
* Returns the size of the old list.
*
* @return The size of the old list.
*/
public abstract int getOldListSize();
/**
* Returns the size of the new list.
*
* @return The size of the new list.
*/
public abstract int getNewListSize();
/**
* Called by the DiffUtil to decide whether two object represent the same Item.
*
* For example, if your items have unique ids, this method should check their id equality.
*
* @param oldItemPosition The position of the item in the old list
* @param newItemPosition The position of the item in the new list
* @return True if the two items represent the same object or false if they are different.
*/
public abstract boolean areItemsTheSame(int oldItemPosition, int newItemPosition);
/**
* Called by the DiffUtil when it wants to check whether two items have the same data.
* DiffUtil uses this information to detect if the contents of an item has changed.
*
* DiffUtil uses this method to check equality instead of {@link Object#equals(Object)}
* so that you can change its behavior depending on your UI.
* For example, if you are using DiffUtil with a
* {@link android.support.v7.widget.RecyclerView.Adapter RecyclerView.Adapter}, you should
* return whether the items' visual representations are the same.
*
* This method is called only if {@link #areItemsTheSame(int, int)} returns
* {@code true} for these items.
*
* @param oldItemPosition The position of the item in the old list
* @param newItemPosition The position of the item in the new list which replaces the
* oldItem
* @return True if the contents of the items are the same or false if they are different.
*/
public abstract boolean areContentsTheSame(int oldItemPosition, int newItemPosition);
/**
* When {@link #areItemsTheSame(int, int)} returns {@code true} for two items and
* {@link #areContentsTheSame(int, int)} returns false for them, DiffUtil
* calls this method to get a payload about the change.
*
* For example, if you are using DiffUtil with {@link RecyclerView}, you can return the
* particular field that changed in the item and your
* {@link android.support.v7.widget.RecyclerView.ItemAnimator ItemAnimator} can use that
* information to run the correct animation.
*
* Default implementation returns {@code null}.
*
* @param oldItemPosition The position of the item in the old list
* @param newItemPosition The position of the item in the new list
*
* @return A payload object that represents the change between the two items.
*/
@Nullable
public Object getChangePayload(int oldItemPosition, int newItemPosition) {
return null;
}
}
/**
* Snakes represent a match between two lists. It is optionally prefixed or postfixed with an
* add or remove operation. See the Myers' paper for details.
*/
static class Snake {
/**
* Position in the old list
*/
int x;
/**
* Position in the new list
*/
int y;
/**
* Number of matches. Might be 0.
*/
int size;
/**
* If true, this is a removal from the original list followed by {@code size} matches.
* If false, this is an addition from the new list followed by {@code size} matches.
*/
boolean removal;
/**
* If true, the addition or removal is at the end of the snake.
* If false, the addition or removal is at the beginning of the snake.
*/
boolean reverse;
}
/**
* Represents a range in two lists that needs to be solved.
*
* This internal class is used when running Myers' algorithm without recursion.
*/
static class Range {
int oldListStart, oldListEnd;
int newListStart, newListEnd;
public Range() {
}
public Range(int oldListStart, int oldListEnd, int newListStart, int newListEnd) {
this.oldListStart = oldListStart;
this.oldListEnd = oldListEnd;
this.newListStart = newListStart;
this.newListEnd = newListEnd;
}
}
/**
* This class holds the information about the result of a
* {@link DiffUtil#calculateDiff(Callback, boolean)} call.
*
* You can consume the updates in a DiffResult via
* {@link #dispatchUpdatesTo(ListUpdateCallback)} or directly stream the results into a
* {@link RecyclerView.Adapter} via {@link #dispatchUpdatesTo(RecyclerView.Adapter)}.
*/
public static class DiffResult {
/**
* While reading the flags below, keep in mind that when multiple items move in a list,
* Myers's may pick any of them as the anchor item and consider that one NOT_CHANGED while
* picking others as additions and removals. This is completely fine as we later detect
* all moves.
*
* Below, when an item is mentioned to stay in the same "location", it means we won't
* dispatch a move/add/remove for it, it DOES NOT mean the item is still in the same
* position.
*/
// item stayed the same.
private static final int FLAG_NOT_CHANGED = 1;
// item stayed in the same location but changed.
private static final int FLAG_CHANGED = FLAG_NOT_CHANGED << 1;
// Item has moved and also changed.
private static final int FLAG_MOVED_CHANGED = FLAG_CHANGED << 1;
// Item has moved but did not change.
private static final int FLAG_MOVED_NOT_CHANGED = FLAG_MOVED_CHANGED << 1;
// Ignore this update.
// If this is an addition from the new list, it means the item is actually removed from an
// earlier position and its move will be dispatched when we process the matching removal
// from the old list.
// If this is a removal from the old list, it means the item is actually added back to an
// earlier index in the new list and we'll dispatch its move when we are processing that
// addition.
private static final int FLAG_IGNORE = FLAG_MOVED_NOT_CHANGED << 1;
// since we are re-using the int arrays that were created in the Myers' step, we mask
// change flags
private static final int FLAG_OFFSET = 5;
private static final int FLAG_MASK = (1 << FLAG_OFFSET) - 1;
// The Myers' snakes. At this point, we only care about their diagonal sections.
private final List mSnakes;
// The list to keep oldItemStatuses. As we traverse old items, we assign flags to them
// which also includes whether they were a real removal or a move (and its new index).
private final int[] mOldItemStatuses;
// The list to keep newItemStatuses. As we traverse new items, we assign flags to them
// which also includes whether they were a real addition or a move(and its old index).
private final int[] mNewItemStatuses;
// The callback that was given to calcualte diff method.
private final Callback mCallback;
private final int mOldListSize;
private final int mNewListSize;
private final boolean mDetectMoves;
/**
* @param callback The callback that was used to calculate the diff
* @param snakes The list of Myers' snakes
* @param oldItemStatuses An int[] that can be re-purposed to keep metadata
* @param newItemStatuses An int[] that can be re-purposed to keep metadata
* @param detectMoves True if this DiffResult will try to detect moved items
*/
DiffResult(Callback callback, List snakes, int[] oldItemStatuses,
int[] newItemStatuses, boolean detectMoves) {
mSnakes = snakes;
mOldItemStatuses = oldItemStatuses;
mNewItemStatuses = newItemStatuses;
Arrays.fill(mOldItemStatuses, 0);
Arrays.fill(mNewItemStatuses, 0);
mCallback = callback;
mOldListSize = callback.getOldListSize();
mNewListSize = callback.getNewListSize();
mDetectMoves = detectMoves;
addRootSnake();
findMatchingItems();
}
/**
* We always add a Snake to 0/0 so that we can run loops from end to beginning and be done
* when we run out of snakes.
*/
private void addRootSnake() {
Snake firstSnake = mSnakes.isEmpty() ? null : mSnakes.get(0);
if (firstSnake == null || firstSnake.x != 0 || firstSnake.y != 0) {
Snake root = new Snake();
root.x = 0;
root.y = 0;
root.removal = false;
root.size = 0;
root.reverse = false;
mSnakes.add(0, root);
}
}
/**
* This method traverses each addition / removal and tries to match it to a previous
* removal / addition. This is how we detect move operations.
*
* This class also flags whether an item has been changed or not.
*
* DiffUtil does this pre-processing so that if it is running on a big list, it can be moved
* to background thread where most of the expensive stuff will be calculated and kept in
* the statuses maps. DiffResult uses this pre-calculated information while dispatching
* the updates (which is probably being called on the main thread).
*/
private void findMatchingItems() {
int posOld = mOldListSize;
int posNew = mNewListSize;
// traverse the matrix from right bottom to 0,0.
for (int i = mSnakes.size() - 1; i >= 0; i--) {
final Snake snake = mSnakes.get(i);
final int endX = snake.x + snake.size;
final int endY = snake.y + snake.size;
if (mDetectMoves) {
while (posOld > endX) {
// this is a removal. Check remaining snakes to see if this was added before
findAddition(posOld, posNew, i);
posOld--;
}
while (posNew > endY) {
// this is an addition. Check remaining snakes to see if this was removed
// before
findRemoval(posOld, posNew, i);
posNew--;
}
}
for (int j = 0; j < snake.size; j++) {
// matching items. Check if it is changed or not
final int oldItemPos = snake.x + j;
final int newItemPos = snake.y + j;
final boolean theSame = mCallback
.areContentsTheSame(oldItemPos, newItemPos);
final int changeFlag = theSame ? FLAG_NOT_CHANGED : FLAG_CHANGED;
mOldItemStatuses[oldItemPos] = (newItemPos << FLAG_OFFSET) | changeFlag;
mNewItemStatuses[newItemPos] = (oldItemPos << FLAG_OFFSET) | changeFlag;
}
posOld = snake.x;
posNew = snake.y;
}
}
private void findAddition(int x, int y, int snakeIndex) {
if (mOldItemStatuses[x - 1] != 0) {
return; // already set by a latter item
}
findMatchingItem(x, y, snakeIndex, false);
}
private void findRemoval(int x, int y, int snakeIndex) {
if (mNewItemStatuses[y - 1] != 0) {
return; // already set by a latter item
}
findMatchingItem(x, y, snakeIndex, true);
}
/**
* Finds a matching item that is before the given coordinates in the matrix
* (before : left and above).
*
* @param x The x position in the matrix (position in the old list)
* @param y The y position in the matrix (position in the new list)
* @param snakeIndex The current snake index
* @param removal True if we are looking for a removal, false otherwise
*
* @return True if such item is found.
*/
private boolean findMatchingItem(final int x, final int y, final int snakeIndex,
final boolean removal) {
final int myItemPos;
int curX;
int curY;
if (removal) {
myItemPos = y - 1;
curX = x;
curY = y - 1;
} else {
myItemPos = x - 1;
curX = x - 1;
curY = y;
}
for (int i = snakeIndex; i >= 0; i--) {
final Snake snake = mSnakes.get(i);
final int endX = snake.x + snake.size;
final int endY = snake.y + snake.size;
if (removal) {
// check removals for a match
for (int pos = curX - 1; pos >= endX; pos--) {
if (mCallback.areItemsTheSame(pos, myItemPos)) {
// found!
final boolean theSame = mCallback.areContentsTheSame(pos, myItemPos);
final int changeFlag = theSame ? FLAG_MOVED_NOT_CHANGED
: FLAG_MOVED_CHANGED;
mNewItemStatuses[myItemPos] = (pos << FLAG_OFFSET) | FLAG_IGNORE;
mOldItemStatuses[pos] = (myItemPos << FLAG_OFFSET) | changeFlag;
return true;
}
}
} else {
// check for additions for a match
for (int pos = curY - 1; pos >= endY; pos--) {
if (mCallback.areItemsTheSame(myItemPos, pos)) {
// found
final boolean theSame = mCallback.areContentsTheSame(myItemPos, pos);
final int changeFlag = theSame ? FLAG_MOVED_NOT_CHANGED
: FLAG_MOVED_CHANGED;
mOldItemStatuses[x - 1] = (pos << FLAG_OFFSET) | FLAG_IGNORE;
mNewItemStatuses[pos] = ((x - 1) << FLAG_OFFSET) | changeFlag;
return true;
}
}
}
curX = snake.x;
curY = snake.y;
}
return false;
}
/**
* Dispatches the update events to the given adapter.
*
* For example, if you have an {@link android.support.v7.widget.RecyclerView.Adapter Adapter}
* that is backed by a {@link List}, you can swap the list with the new one then call this
* method to dispatch all updates to the RecyclerView.
*
* List oldList = mAdapter.getData();
* DiffResult result = DiffUtil.calculateDiff(new MyCallback(oldList, newList));
* mAdapter.setData(newList);
* result.dispatchUpdatesTo(mAdapter);
*
*
* Note that the RecyclerView requires you to dispatch adapter updates immediately when you
* change the data (you cannot defer {@code notify*} calls). The usage above adheres to this
* rule because updates are sent to the adapter right after the backing data is changed,
* before RecyclerView tries to read it.
*
* On the other hand, if you have another
* {@link android.support.v7.widget.RecyclerView.AdapterDataObserver AdapterDataObserver}
* that tries to process events synchronously, this may confuse that observer because the
* list is instantly moved to its final state while the adapter updates are dispatched later
* on, one by one. If you have such an
* {@link android.support.v7.widget.RecyclerView.AdapterDataObserver AdapterDataObserver},
* you can use
* {@link #dispatchUpdatesTo(ListUpdateCallback)} to handle each modification
* manually.
*
* @param adapter A RecyclerView adapter which was displaying the old list and will start
* displaying the new list.
*/
public void dispatchUpdatesTo(final RecyclerView.Adapter adapter) {
dispatchUpdatesTo(new ListUpdateCallback() {
@Override
public void onInserted(int position, int count) {
adapter.notifyItemRangeInserted(position, count);
}
@Override
public void onRemoved(int position, int count) {
adapter.notifyItemRangeRemoved(position, count);
}
@Override
public void onMoved(int fromPosition, int toPosition) {
adapter.notifyItemMoved(fromPosition, toPosition);
}
@Override
public void onChanged(int position, int count, Object payload) {
adapter.notifyItemRangeChanged(position, count, payload);
}
});
}
/**
* Dispatches update operations to the given Callback.
*
* These updates are atomic such that the first update call effects every update call that
* comes after it (the same as RecyclerView).
*
* @param updateCallback The callback to receive the update operations.
* @see #dispatchUpdatesTo(RecyclerView.Adapter)
*/
public void dispatchUpdatesTo(ListUpdateCallback updateCallback) {
final BatchingListUpdateCallback batchingCallback;
if (updateCallback instanceof BatchingListUpdateCallback) {
batchingCallback = (BatchingListUpdateCallback) updateCallback;
} else {
batchingCallback = new BatchingListUpdateCallback(updateCallback);
// replace updateCallback with a batching callback and override references to
// updateCallback so that we don't call it directly by mistake
//noinspection UnusedAssignment
updateCallback = batchingCallback;
}
// These are add/remove ops that are converted to moves. We track their positions until
// their respective update operations are processed.
final List postponedUpdates = new ArrayList<>();
int posOld = mOldListSize;
int posNew = mNewListSize;
for (int snakeIndex = mSnakes.size() - 1; snakeIndex >= 0; snakeIndex--) {
final Snake snake = mSnakes.get(snakeIndex);
final int snakeSize = snake.size;
final int endX = snake.x + snakeSize;
final int endY = snake.y + snakeSize;
if (endX < posOld) {
dispatchRemovals(postponedUpdates, batchingCallback, endX, posOld - endX, endX);
}
if (endY < posNew) {
dispatchAdditions(postponedUpdates, batchingCallback, endX, posNew - endY,
endY);
}
for (int i = snakeSize - 1; i >= 0; i--) {
if ((mOldItemStatuses[snake.x + i] & FLAG_MASK) == FLAG_CHANGED) {
batchingCallback.onChanged(snake.x + i, 1,
mCallback.getChangePayload(snake.x + i, snake.y + i));
}
}
posOld = snake.x;
posNew = snake.y;
}
batchingCallback.dispatchLastEvent();
}
private static PostponedUpdate removePostponedUpdate(List updates,
int pos, boolean removal) {
for (int i = updates.size() - 1; i >= 0; i--) {
final PostponedUpdate update = updates.get(i);
if (update.posInOwnerList == pos && update.removal == removal) {
updates.remove(i);
for (int j = i; j < updates.size(); j++) {
// offset other ops since they swapped positions
updates.get(j).currentPos += removal ? 1 : -1;
}
return update;
}
}
return null;
}
private void dispatchAdditions(List postponedUpdates,
ListUpdateCallback updateCallback, int start, int count, int globalIndex) {
if (!mDetectMoves) {
updateCallback.onInserted(start, count);
return;
}
for (int i = count - 1; i >= 0; i--) {
int status = mNewItemStatuses[globalIndex + i] & FLAG_MASK;
switch (status) {
case 0: // real addition
updateCallback.onInserted(start, 1);
for (PostponedUpdate update : postponedUpdates) {
update.currentPos += 1;
}
break;
case FLAG_MOVED_CHANGED:
case FLAG_MOVED_NOT_CHANGED:
final int pos = mNewItemStatuses[globalIndex + i] >> FLAG_OFFSET;
final PostponedUpdate update = removePostponedUpdate(postponedUpdates, pos,
true);
// the item was moved from that position
//noinspection ConstantConditions
updateCallback.onMoved(update.currentPos, start);
if (status == FLAG_MOVED_CHANGED) {
// also dispatch a change
updateCallback.onChanged(start, 1,
mCallback.getChangePayload(pos, globalIndex + i));
}
break;
case FLAG_IGNORE: // ignoring this
postponedUpdates.add(new PostponedUpdate(globalIndex + i, start, false));
break;
default:
throw new IllegalStateException(
"unknown flag for pos " + (globalIndex + i) + " " + Long
.toBinaryString(status));
}
}
}
private void dispatchRemovals(List postponedUpdates,
ListUpdateCallback updateCallback, int start, int count, int globalIndex) {
if (!mDetectMoves) {
updateCallback.onRemoved(start, count);
return;
}
for (int i = count - 1; i >= 0; i--) {
final int status = mOldItemStatuses[globalIndex + i] & FLAG_MASK;
switch (status) {
case 0: // real removal
updateCallback.onRemoved(start + i, 1);
for (PostponedUpdate update : postponedUpdates) {
update.currentPos -= 1;
}
break;
case FLAG_MOVED_CHANGED:
case FLAG_MOVED_NOT_CHANGED:
final int pos = mOldItemStatuses[globalIndex + i] >> FLAG_OFFSET;
final PostponedUpdate update = removePostponedUpdate(postponedUpdates, pos,
false);
// the item was moved to that position. we do -1 because this is a move not
// add and removing current item offsets the target move by 1
//noinspection ConstantConditions
updateCallback.onMoved(start + i, update.currentPos - 1);
if (status == FLAG_MOVED_CHANGED) {
// also dispatch a change
updateCallback.onChanged(update.currentPos - 1, 1,
mCallback.getChangePayload(globalIndex + i, pos));
}
break;
case FLAG_IGNORE: // ignoring this
postponedUpdates.add(new PostponedUpdate(globalIndex + i, start + i, true));
break;
default:
throw new IllegalStateException(
"unknown flag for pos " + (globalIndex + i) + " " + Long
.toBinaryString(status));
}
}
}
@VisibleForTesting
List getSnakes() {
return mSnakes;
}
}
/**
* Represents an update that we skipped because it was a move.
*
* When an update is skipped, it is tracked as other updates are dispatched until the matching
* add/remove operation is found at which point the tracked position is used to dispatch the
* update.
*/
private static class PostponedUpdate {
int posInOwnerList;
int currentPos;
boolean removal;
public PostponedUpdate(int posInOwnerList, int currentPos, boolean removal) {
this.posInOwnerList = posInOwnerList;
this.currentPos = currentPos;
this.removal = removal;
}
}
}