com.actelion.research.chem.coords.InventorFragment Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of openchemlib Show documentation
Show all versions of openchemlib Show documentation
Open Source Chemistry Library
package com.actelion.research.chem.coords;
import com.actelion.research.chem.StereoMolecule;
import java.util.ArrayList;
public class InventorFragment {
private static final double cCollisionLimitBondRotation = 0.8;
private static final double cCollisionLimitAtomMovement = 0.5;
private final int CIRCULAR_BINS = 36;
protected int[] mGlobalAtom;
protected int[] mGlobalBond;
protected int[] mGlobalToLocalAtom;
protected int[] mPriority;
protected double[] mAtomX;
protected double[] mAtomY;
private StereoMolecule mMol;
private int mMode;
private boolean mMinMaxAvail;
private double mMinX;
private double mMinY;
private double mMaxX;
private double mMaxY;
private double mCollisionPanalty;
private int[][] mFlipList;
protected InventorFragment(StereoMolecule mol, int atoms, int mode) {
mMol = mol;
mMode = mode;
mGlobalAtom = new int[atoms];
mPriority = new int[atoms];
mAtomX = new double[atoms];
mAtomY = new double[atoms];
}
protected InventorFragment(InventorFragment f, int mode) {
mMol = f.mMol;
mMode = mode;
mGlobalAtom = new int[f.size()];
mPriority = new int[f.size()];
mAtomX = new double[f.size()];
mAtomY = new double[f.size()];
for (int i=0; ithe bond atom that lies on the larger side of the bond
// [1]->the bond atom on the smaller side of the bond
// [2...n]->all other atoms on the smaller side of the bond.
// These are the ones getting flipped on the mirror
// line defined by the bond.
if (mFlipList == null)
mFlipList = new int[mMol.getAllBonds()][];
if (mFlipList[bond] == null) {
int[] graphAtom = new int[mGlobalAtom.length];
boolean[] isOnSide = new boolean[mMol.getAllAtoms()];
int atom1 = mMol.getBondAtom(0, bond);
int atom2 = mMol.getBondAtom(1, bond);
graphAtom[0] = atom1;
isOnSide[atom1] = true;
int current = 0;
int highest = 0;
while (current <= highest) {
for (int i=0; i mGlobalAtom.length/2);
// if we retain core atoms and the smaller side contains core atoms, then flip the larger side
if ((mMode & CoordinateInventor.MODE_CONSIDER_MARKED_ATOMS) != 0) {
boolean coreOnSide = false;
boolean coreOffSide = false;
for (int i = 0; i< mGlobalAtom.length; i++) {
if (mMol.isMarkedAtom(mGlobalAtom[i])) {
if (isOnSide[mGlobalAtom[i]])
coreOnSide = true;
else
coreOffSide = true;
}
}
if (coreOnSide != coreOffSide)
flipOtherSide = coreOnSide;
}
int count = 2;
mFlipList[bond] = new int[flipOtherSide ? mGlobalAtom.length-highest : highest+2];
for (int i = 0; i< mGlobalAtom.length; i++) {
if (mGlobalAtom[i] == atom1)
mFlipList[bond][flipOtherSide ? 0 : 1] = i;
else if (mGlobalAtom[i] == atom2)
mFlipList[bond][flipOtherSide ? 1 : 0] = i;
else if (flipOtherSide ^ isOnSide[mGlobalAtom[i]])
mFlipList[bond][count++] = i;
}
}
double x = mAtomX[mFlipList[bond][0]];
double y = mAtomY[mFlipList[bond][0]];
double mirrorAngle = InventorAngle.getAngle(x, y, mAtomX[mFlipList[bond][1]],
mAtomY[mFlipList[bond][1]]);
for (int i=2; i=2) ? corner-2 : corner+2);
if (maxGain < gain) {
maxGain = gain;
maxCorner = corner;
}
}
double sumHeight = getHeight() + f.getHeight();
double sumWidth = 0.75 * (getWidth() + f.getWidth());
double maxHeight = Math.max(getHeight(), f.getHeight());
double maxWidth = 0.75 * Math.max(getWidth(), f.getWidth());
double bestCornerSize = Math.sqrt((sumHeight - maxGain) * (sumHeight - maxGain)
+ (sumWidth - 0.75 * maxGain) * (sumWidth - 0.75 * maxGain));
double toppedSize = Math.max(maxWidth, sumHeight);
double besideSize = Math.max(maxHeight, sumWidth);
if (bestCornerSize < toppedSize && bestCornerSize < besideSize) {
switch(maxCorner) {
case 0:
f.translate(mMaxX - f.mMinX - maxGain + 1.0, mMinY - f.mMaxY + maxGain - 1.0);
break;
case 1:
f.translate(mMaxX - f.mMinX - maxGain + 1.0, mMaxY - f.mMinY - maxGain + 1.0);
break;
case 2:
f.translate(mMinX - f.mMaxX + maxGain - 1.0, mMaxY - f.mMinY - maxGain + 1.0);
break;
case 3:
f.translate(mMinX - f.mMaxX + maxGain - 1.0, mMinY - f.mMaxY + maxGain - 1.0);
break;
}
}
else if (besideSize < toppedSize) {
f.translate(mMaxX - f.mMinX + 1.0, (mMaxY + mMinY - f.mMaxY - f.mMinY) / 2);
}
else {
f.translate((mMaxX + mMinX - f.mMaxX - f.mMinX) / 2, mMaxY - f.mMinY + 1.0);
}
}
private void calculateMinMax() {
if (mMinMaxAvail)
return;
mMinX = mAtomX[0];
mMaxX = mAtomX[0];
mMinY = mAtomY[0];
mMaxY = mAtomY[0];
for (int i = 0; i< mGlobalAtom.length; i++) {
double surplus = getAtomSurplus(i);
if (mMinX > mAtomX[i] - surplus)
mMinX = mAtomX[i] - surplus;
if (mMaxX < mAtomX[i] + surplus)
mMaxX = mAtomX[i] + surplus;
if (mMinY > mAtomY[i] - surplus)
mMinY = mAtomY[i] - surplus;
if (mMaxY < mAtomY[i] + surplus)
mMaxY = mAtomY[i] + surplus;
}
mMinMaxAvail = true;
}
private double getCornerDistance(int corner) {
double minDistance = 9999.0;
for (int atom = 0; atom< mGlobalAtom.length; atom++) {
double surplus = getAtomSurplus(atom);
double d = 0.0;
switch (corner) {
case 0: // top right
d = mMaxX - 0.5 * (mMaxX + mMinY + mAtomX[atom] - mAtomY[atom]);
break;
case 1: // bottom right
d = mMaxX - 0.5 * (mMaxX - mMaxY + mAtomX[atom] + mAtomY[atom]);
break;
case 2: // bottom left
d = 0.5 * (mMinX + mMaxY + mAtomX[atom] - mAtomY[atom]) - mMinX;
break;
case 3: // top left
d = 0.5 * (mMinX - mMinY + mAtomX[atom] + mAtomY[atom]) - mMinX;
break;
}
if (minDistance > d - surplus)
minDistance = d - surplus;
}
return minDistance;
}
private double getAtomSurplus(int atom) {
return (mMol.getAtomQueryFeatures(mGlobalAtom[atom]) != 0) ? 0.6
: (mMol.getAtomicNo(mGlobalAtom[atom]) != 6) ? 0.25 : 0.0;
}
protected ArrayList getCollisionList() {
mCollisionPanalty = 0.0;
ArrayList collisionList = new ArrayList();
for (int i = 1; i< mGlobalAtom.length; i++) {
for (int j=0; j atom)
fragmentBonds++;
// for (int j=connAtoms; j atom && isMember(mMol.getConnAtom(atom, j)))
// fragmentBonds++;
}
mGlobalBond = new int[fragmentBonds];
mGlobalToLocalAtom = new int[mMol.getAllAtoms()];
fragmentBonds = 0;
for (int i=0; i atom)
mGlobalBond[fragmentBonds++] = mMol.getConnBond(atom, j);
// for (int j=connAtoms; j atom && isMember(mMol.getConnAtom(atom, j)))
// mGlobalBond[fragmentBonds++] = mMol.getConnBond(atom, j);
}
}
protected void optimizeAtomCoordinates(int atom) {
double x = mAtomX[atom];
double y = mAtomY[atom];
InventorAngle[] collisionForce = new InventorAngle[4];
int forces = 0;
for (int i = 0; i< mGlobalBond.length; i++) {
if (forces >= 4)
break;
if (atom == mGlobalToLocalAtom[mMol.getBondAtom(0, mGlobalBond[i])]
|| atom == mGlobalToLocalAtom[mMol.getBondAtom(1, mGlobalBond[i])])
continue;
double x1 = mAtomX[mGlobalToLocalAtom[mMol.getBondAtom(0, mGlobalBond[i])]];
double y1 = mAtomY[mGlobalToLocalAtom[mMol.getBondAtom(0, mGlobalBond[i])]];
double x2 = mAtomX[mGlobalToLocalAtom[mMol.getBondAtom(1, mGlobalBond[i])]];
double y2 = mAtomY[mGlobalToLocalAtom[mMol.getBondAtom(1, mGlobalBond[i])]];
double d1 = Math.sqrt((x1-x)*(x1-x)+(y1-y)*(y1-y));
double d2 = Math.sqrt((x2-x)*(x2-x)+(y2-y)*(y2-y));
double bondLength = Math.sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));
if (d1 0) {
InventorAngle force = CoordinateInventor.getMeanAngle(collisionForce, forces);
mAtomX[atom] += force.mLength * Math.sin(force.mAngle);
mAtomY[atom] += force.mLength * Math.cos(force.mAngle);
}
}
/**
* @param x
* @param y
* @return angle
*/
protected double calculatePreferredAttachmentAngle(double x, double y, int neighbourAtomCount, double padding) {
if (size() == 1)
return 0;
final double BIN_ANGLE = 2.0 * Math.PI / CIRCULAR_BINS;
double neighbourRadius = padding
+ Math.sqrt(neighbourAtomCount); // assume a little large, because they neighbour exposes its wide side
double[] distance = new double[CIRCULAR_BINS];
for (int i = 0; i< mGlobalAtom.length; i++) {
double angle = InventorAngle.getAngle(x, y, mAtomX[i], mAtomY[i]);
int bin = correctBin((int)Math.round(angle * CIRCULAR_BINS / (2.0*Math.PI)));
double dx = x - mAtomX[i];
double dy = y - mAtomY[i];
double sd = dx*dx + dy*dy;
if (distance[bin] < sd)
distance[bin] = sd;
}
double maxDistance = -1;
int maxBin = -1;
for (int i=0; i= minDistance)
continue;
double localMinDistance = distance[bin];
// check, whether localMinDistance is compatible with adjacent bins and adapt, if needed
for (int i=1; i localMinDistance) {
minDistance = localMinDistance;
minBin = bin;
}
}
return Math.PI * 2 * minBin / CIRCULAR_BINS;
}
private int correctBin(int bin) {
return bin < 0 ? bin + CIRCULAR_BINS : bin >= CIRCULAR_BINS ? bin - CIRCULAR_BINS : bin;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy