com.actelion.research.calc.regression.ModelError Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of openchemlib Show documentation
Show all versions of openchemlib Show documentation
Open Source Chemistry Library
package com.actelion.research.calc.regression;
import com.actelion.research.calc.Matrix;
import com.actelion.research.calc.MatrixFunctions;
import com.actelion.research.calc.classification.PrecisionAndRecall;
import com.actelion.research.util.Formatter;
import com.actelion.research.util.datamodel.DoubleArray;
import java.util.*;
/**
* ModelError
*
* This class is a data model for the error. It is not the error of the model.
*
* Copyright: Actelion Ltd., Inc. All Rights Reserved
* This software is the proprietary information of Actelion Pharmaceuticals, Ltd.
* Use is subject to license terms.
* @author Modest von Korff
* Aug 14, 2015 MvK Start implementation
*/
public class ModelError {
// Average from the sum of |errors|
public double error;
public double errorMedian;
public double errorRelative;
public double errorRelativeMedian;
public double errorRelativeWeighted;
public double errSumSquared;
public double errMax;
public double errMin;
public double corrSquared;
public double corrSquaredSpearman;
// Classification
public boolean classification;
public PrecisionAndRecall precisionAndRecall;
public boolean failed;
public int nNotFiniteRelError;
/**
*
*/
public ModelError() {
failed = false;
}
public void setFailed() {
this.failed = true;
}
public boolean isFailed() {
return failed;
}
/* (non-Javadoc)
* @see java.lang.Object#toString()
*/
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
if(failed) {
sb.append("ModelError [error=failed]");
} else {
sb.append("ModelError [error=");
sb.append(Formatter.format3(error));
sb.append(", errRelativeMedian=");
sb.append(Formatter.format3(errorRelativeMedian));
if(nNotFiniteRelError!=0){
sb.append(", NotFiniteRelError=");
sb.append(nNotFiniteRelError);
}
sb.append(", errMax=");
sb.append(Formatter.format3(errMax));
sb.append(", errMin=");
sb.append(Formatter.format3(errMin));
sb.append(", corrSquared=");
sb.append(Formatter.format3(corrSquared));
if(precisionAndRecall!=null){
sb.append(", Cohen's kappa=");
sb.append(Formatter.format3(precisionAndRecall.calculateCohensKappa()));
}
sb.append("]");
}
return sb.toString();
}
/**
* Calculates the absolute and the relative error.
* @param Y
* @param YHat
* @return
*/
public static ModelError calculateError(Matrix Y, Matrix YHat){
ModelError modelError = new ModelError();
modelError.errMax = 0;
modelError.errMin = Integer.MAX_VALUE;
DoubleArray daError = new DoubleArray(Y.rows()*YHat.cols());
double sumSquared = 0;
for (int i = 0; i < YHat.cols(); i++) {
for (int j = 0; j < YHat.rows(); j++) {
double e = Math.abs(Y.get(j, i) - YHat.get(j, i));
sumSquared += e*e;
modelError.errMax = Math.max(modelError.errMax, e);
modelError.errMin = Math.min(modelError.errMin, e);
modelError.error += e;
daError.add(e);
}
}
modelError.error = modelError.error / (YHat.rows()*YHat.cols());
modelError.errSumSquared = sumSquared;
modelError.errorMedian = daError.median();
DoubleArray daErrorRelative = new DoubleArray(YHat.rows()*YHat.cols());
modelError.nNotFiniteRelError=0;
for (int i = 0; i < YHat.cols(); i++) {
for (int j = 0; j < YHat.rows(); j++) {
double y = Y.get(j, i);
double yHat = YHat.get(j, i);
double er = getRelativeError(y, yHat);
if(Double.isFinite(er)){
daErrorRelative.add(er);
}else {
modelError.nNotFiniteRelError++;
}
}
}
if(daErrorRelative.size()>0) {
modelError.errorRelative = daErrorRelative.avr();
modelError.errorRelativeMedian = daErrorRelative.median();
}
//
// Weighted error
//
DoubleArray daErrorRelativeWeighted = new DoubleArray(YHat.rows()*YHat.cols());
for (int i = 0; i < YHat.cols(); i++) {
for (int j = 0; j < YHat.rows(); j++) {
double y = Y.get(j, i);
double yHat = YHat.get(j, i);
double w = Math.log10(10+y);
if(Math.abs(y) > Matrix.TINY04) {
double er = Math.abs((yHat - y) / y) * (1.0/w);
if(Double.isFinite(er)) {
daErrorRelativeWeighted.add(er);
}
} else {
double er = Math.abs((yHat - y) / Matrix.TINY04) * (1.0/w);
if(Double.isFinite(er)) {
daErrorRelativeWeighted.add(er);
}
}
}
}
modelError.errorRelativeWeighted = daErrorRelativeWeighted.avr();
double corr = 0;
double corrSpearman = 0;
try {
corr = MatrixFunctions.getCorrPearson(YHat, Y);
corrSpearman = MatrixFunctions.getCorrSpearman(YHat, Y);
} catch (Exception e) {
e.printStackTrace();
System.err.println("YHat");
System.err.println(YHat.toString());
System.err.println("Y");
System.err.println(Y.toString());
}
if(!Double.isFinite(corr)){
corr=0;
}
if(!Double.isFinite(corrSpearman)){
corrSpearman=0;
}
modelError.corrSquared = corr*corr;
modelError.corrSquaredSpearman = corrSpearman*corrSpearman;
return modelError;
}
public static double getRelativeError(double y, double yHat){
double er = 0;
if(Math.abs(y) > Matrix.TINY04) {
er = Math.abs((yHat - y) / y);
} else {
er = Math.abs((yHat - y) / Matrix.TINY04);
}
return er;
}
public static ModelError calculateError(Matrix Y, Matrix YHat, double threshold, boolean above){
ModelError me = calculateError(Y, YHat);
me.precisionAndRecall = new PrecisionAndRecall();
for (int i = 0; i < YHat.cols(); i++) {
for (int j = 0; j < YHat.rows(); j++) {
double y = Y.get(j, i);
double yHat = YHat.get(j, i);
if(above) {
if(y>=threshold && yHat>=threshold) {
me.precisionAndRecall.truePositive++;
} else if(y < threshold && yHat < threshold) {
me.precisionAndRecall.trueNegative++;
} else if (yHat>=threshold){
me.precisionAndRecall.falsePositive++;
} else if (yHat threshold && yHat > threshold) {
me.precisionAndRecall.trueNegative++;
} else if (yHat<=threshold){
me.precisionAndRecall.falsePositive++;
} else if (yHat>threshold){
me.precisionAndRecall.falseNegative++;
}
}
}
}
me.classification = true;
return me;
}
public static List getError(List liME){
List li = new ArrayList();
for (ModelError modelError : liME) {
li.add(modelError.error);
}
return li;
}
public static ModelError getErrorAverage(List liME){
ModelError modelErrorAvr = new ModelError();
for (ModelError modelError : liME) {
modelErrorAvr.errMax += modelError.errMax;
modelErrorAvr.errMin += modelError.errMin;
modelErrorAvr.error += modelError.error;
modelErrorAvr.corrSquared += modelError.corrSquared;
}
int n = liME.size();
modelErrorAvr.errMax /= n;
modelErrorAvr.errMin /= n;
modelErrorAvr.error /= n;
modelErrorAvr.corrSquared /= n;
return modelErrorAvr;
}
public static Comparator getComparatorError(){
return new Comparator() {
@Override
public int compare(ModelError o1, ModelError o2) {
int cmp = 0;
if(o1.error > o2.error){
cmp=1;
}else if(o1.error < o2.error){
cmp=-1;
}
return cmp;
}
};
}
public static void main(String[] args) {
int n = 11;
double fracNoise = 0.1;
Random random = new Random();
double [] a = new double[n];
double [] b = new double[n];
for (int i = 0; i < n; i++) {
a[i] = random.nextDouble();
b[i] = random.nextDouble();
}
ModelError meRaw = ModelError.calculateError(new Matrix(false, a), new Matrix(false, b));
System.out.println(meRaw.toString());
Arrays.sort(a);
Arrays.sort(b);
ModelError meSort = ModelError.calculateError(new Matrix(false, a), new Matrix(false, b));
System.out.println(meSort.toString());
for (int i = 0; i < n; i++) {
if(random.nextDouble()
© 2015 - 2025 Weber Informatics LLC | Privacy Policy