All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.actelion.research.calc.regression.gaussianprocess.GaussianProcessRegression Maven / Gradle / Ivy

There is a newer version: 2024.12.1
Show newest version
package com.actelion.research.calc.regression.gaussianprocess;

import com.actelion.research.calc.Matrix;
import com.actelion.research.calc.regression.ARegressionMethod;
import com.actelion.research.util.datamodel.ModelXYIndex;
import smile.clustering.KMeans;
import smile.math.Math;
import smile.math.kernel.GaussianKernel;
import smile.math.kernel.MercerKernel;

/**
 * GaussianProcessRegression
 * 

Modest v. Korff

*

* Created by korffmo1 on 01.04.19. */ public class GaussianProcessRegression extends ARegressionMethod implements Comparable { private static final int MIN_K = 3; private static final int K_DEVISOR = 10; // private static final int K = 11; private smile.regression.GaussianProcessRegression gaussianProcessRegression; public GaussianProcessRegression() { setParameterRegressionMethod(new ParameterGaussianProcess()); // To prevent multi-core execution on Random Forest level // On the grid the permissions are denied. try { System.setProperty("smile.threads", "1"); } catch (Exception e) { e.printStackTrace(); } } public GaussianProcessRegression(ParameterGaussianProcess parameterGaussianProcess) { setParameterRegressionMethod(parameterGaussianProcess); } public void setLambda(double lambda){ getParameter().setLambda(lambda); } @Override public Matrix createModel(ModelXYIndex modelXYIndexTrain) { Matrix YHat = null; try { ParameterGaussianProcess parameterGaussianProcess = getParameter(); int rows = modelXYIndexTrain.X.rows(); if(modelXYIndexTrain.Y.cols()!=1){ throw new RuntimeException("Only one column for y is allowed!"); } else if(rows < MIN_K){ throw new RuntimeException("Unsufficient number of objects for regression."); } double [][] X = modelXYIndexTrain.X.getArray(); double [] y = modelXYIndexTrain.Y.getColAsDouble(0); int k = rows / K_DEVISOR; if(rows>1000){ k = rows / 100; } else if(rows>10000){ k = rows / 1000; } if(k < MIN_K){ k=MIN_K; } // System.out.println("GaussianProcessRegression rows train " + rows + ", k " + k + "."); KMeans kmeans = new KMeans(X, k, 10); double[][] centers = kmeans.centroids(); double r0 = 0.0; for (int l = 0; l < centers.length; l++) { for (int j = 0; j < l; j++) { r0 += Math.distance(centers[l], centers[j]); } } r0 /= (2 * centers.length); MercerKernel mercerKernel = new GaussianKernel(r0); gaussianProcessRegression = new smile.regression.GaussianProcessRegression(X, y, mercerKernel, parameterGaussianProcess.getLambda()); YHat = calculateYHat(modelXYIndexTrain.X); } catch (Exception e) { e.printStackTrace(); } return YHat; } @Override public Matrix calculateYHat(Matrix X) { double [] arrY = new double[X.rows()]; for (int i = 0; i < X.rows(); i++) { double [] arrRow = X.getRow(i); double y = gaussianProcessRegression.predict(arrRow); arrY[i]=y; } return new Matrix(false, arrY); } @Override public double calculateYHat(double[] arrRow) { double yHat; synchronized (this) { yHat = gaussianProcessRegression.predict(arrRow); } return yHat; } @Override public int compareTo(GaussianProcessRegression o) { return getParameter().compareTo(o.getParameter()); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy