All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.actelion.research.calc.regression.gaussianprocess.ParameterGaussianProcess Maven / Gradle / Ivy

There is a newer version: 2024.12.1
Show newest version
package com.actelion.research.calc.regression.gaussianprocess;

import com.actelion.research.util.Formatter;
import com.actelion.research.calc.regression.ConstantsRegressionMethods;
import com.actelion.research.calc.regression.ParameterRegressionMethod;

import java.io.File;
import java.io.IOException;
import java.util.List;

/**
 * ParameterGaussianProcess
 * 

Modest v. Korff

*

* Created by korffmo1 on 01.04.19. */ public class ParameterGaussianProcess extends ParameterRegressionMethod { public static final String TAG_LAMBDA="Lambda"; public static final double LAMBDA = 0.005; private double lambda; public ParameterGaussianProcess() { super(ConstantsRegressionMethods.MODEL_GAUSSIAN_PROCESS); setLambda(LAMBDA); } @Override public int compareTo(ParameterRegressionMethod o) { int cmp = 0; ParameterGaussianProcess p = (ParameterGaussianProcess)o; return cmp; } public double getLambda() { return lambda; } public void setLambda(double lambda) { this.lambda = lambda; properties.put(TAG_LAMBDA, Double.toString(lambda)); } @Override protected void decodeProperties2Parameter() { lambda = Double.parseDouble(properties.getProperty(TAG_LAMBDA)); } @Override public String toString() { final StringBuilder sb = new StringBuilder("ParameterGaussianProcess{"); sb.append("lambda=").append(Formatter.format3(lambda)); sb.append('}'); return sb.toString(); } public static List getHeader(){ List li = ParameterRegressionMethod.getHeader(); // li.add(TAG_KERNEL); li.add(TAG_LAMBDA); return li; } public static void main(String[] args) throws IOException { File dir = new File("/home/korffmo1/tmp/tmp00"); File fiProp = new File(dir, "gaussianProcess.properties"); ParameterGaussianProcess parameter = new ParameterGaussianProcess(); parameter.lambda = 1.123456; parameter.write(fiProp); ParameterGaussianProcess parameterIn = new ParameterGaussianProcess(); parameterIn.read(fiProp); System.out.println(parameterIn.toString()); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy