All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.actelion.research.calc.regression.svm.AnalyticalParameterCalculatorSVM Maven / Gradle / Ivy

There is a newer version: 2024.12.1
Show newest version
/*
 * Copyright (c) 2019.
 * Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
 *
 *  This file is part of DataWarrior.
 *
 *  DataWarrior is free software: you can redistribute it and/or modify it under the terms of the
 *  GNU General Public License as published by the Free Software Foundation, either version 3 of
 *  the License, or (at your option) any later version.
 *
 *  DataWarrior is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
 *  without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 *  See the GNU General Public License for more details.
 *  You should have received a copy of the GNU General Public License along with DataWarrior.
 *  If not, see http://www.gnu.org/licenses/.
 *
 *  @author Modest v. Korff
 *
 */

package com.actelion.research.calc.regression.svm;

import com.actelion.research.calc.Matrix;
import com.actelion.research.calc.statistics.ModelStatisticsOverview;
import com.actelion.research.calc.statistics.StatisticsOverview;
import com.actelion.research.util.Formatter;
import com.actelion.research.util.datamodel.DoubleArray;
import com.actelion.research.util.datamodel.ModelXYIndex;
import com.actelion.research.calc.regression.ModelError;
import com.actelion.research.calc.regression.knn.KNNRegression;
import org.machinelearning.svm.libsvm.svm_parameter;

/**
 * AnalyticalParameterCalculatorSVM
 * 

Modest v. Korff

*

* Created by korffmo1 on 01.11.19. */ public class AnalyticalParameterCalculatorSVM { public static ParameterSVM calculate(ModelXYIndex modelXYTrain){ System.out.println("AnalyticalParameterCalculatorSVM"); // // Parameter C // if(modelXYTrain.Y.cols() != 1) { throw new RuntimeException("Only single col allowed for Y!"); } double rows = modelXYTrain.X.rows(); System.out.println("Rows X train " + (int)rows); DoubleArray daY = new DoubleArray(modelXYTrain.Y.getColAsDouble(0)); StatisticsOverview statisticsOverview = new StatisticsOverview(daY); ModelStatisticsOverview modelStatisticsOverviewY = statisticsOverview.evaluate(); double sigmaY = modelStatisticsOverviewY.sdv; System.out.println("Sigma in y " + Formatter.format3(sigmaY)); double avr = modelStatisticsOverviewY.avr; System.out.println("Average in y " + Formatter.format3(avr)); // // Cherkassky, Vladimir, and Yunqian Ma. // "Practical selection of SVM parameters and noise estimation for SVM regression." // Neural networks 17.1 (2004): 113-126. // p5 equation 11 double C = Math.max(Math.abs(avr-sigmaY*3), Math.abs(avr+sigmaY*3)); System.out.println("C " + Formatter.format3(C)); KNNRegression knnRegression = new KNNRegression(); final int k = 3; knnRegression.setNeighbours(k); Matrix yHat = knnRegression.createModel(modelXYTrain); ModelError modelErrorKNN = ModelError.calculateError(modelXYTrain.Y, yHat); // Cherkassky, Vladimir, and Yunqian Ma. // "Practical selection of SVM parameters and noise estimation for SVM regression." // Neural networks 17.1 (2004): 113-126. // p18 equation 23 double sigmaSquaredYHat = k/(k-1) * 1.0/rows * modelErrorKNN.errSumSquared; System.out.println("Sigma squared y hat " + Formatter.format3(sigmaSquaredYHat)); // Cherkassky, Vladimir, and Yunqian Ma. // "Practical selection of SVM parameters and noise estimation for SVM regression." // Neural networks 17.1 (2004): 113-126. // p6 equation 14 final double tau = 3; double epsilon = tau * Math.sqrt(sigmaSquaredYHat) * Math.sqrt(Math.log(rows)/rows); System.out.println("Epsilon " + Formatter.format3(epsilon)); double gamma = 1.0 / modelXYTrain.X.cols(); System.out.println("Gamma " + Formatter.format4(gamma)); int kernelType = svm_parameter.RBF; svm_parameter svmParameter = SVMParameterHelper.regressionEpsilonSVR(); svmParameter.kernel_type = kernelType; svmParameter.eps = epsilon; svmParameter.C = C; svmParameter.gamma = gamma; svmParameter.degree = 0; ParameterSVM parameterSVM = new ParameterSVM(svmParameter); return parameterSVM; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy