All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.actelion.research.calc.regression.svm.ParameterSVM Maven / Gradle / Ivy

There is a newer version: 2024.12.1
Show newest version
package com.actelion.research.calc.regression.svm;

import com.actelion.research.calc.Matrix;
import com.actelion.research.calc.regression.ConstantsRegressionMethods;
import com.actelion.research.calc.regression.ParameterRegressionMethod;
import org.machinelearning.svm.libsvm.svm_parameter;

import java.text.DecimalFormat;
import java.util.Arrays;
import java.util.List;

/**
 * ParameterSVM
 * 

Modest v. Korff

*

* Created by korffmo1 on 06.12.18. */ public class ParameterSVM extends ParameterRegressionMethod { public static final String TAG_SVM_TYPE="SVMRegressionType"; public static final String TAG_KERNEL="Kernel"; public static final String TAG_DEGREE="Degree"; public static final String TAG_GAMMA="Gamma"; public static final String TAG_COEF0="Coef0"; public static final String TAG_CACHE_SIZE="CacheSize"; public static final String TAG_EPSILON="Epsilon"; public static final String TAG_C="C"; public static final String TAG_NR_WEIGHT="nrWeight"; public static final String TAG_NU="Nu"; public static final String TAG_P="p"; public static final String TAG_SHRINKING="Shrinking"; public static final String TAG_PROBABILITY="Probability"; private int svmType; private int kernelType; private int degree; // for poly private double gamma; // for poly/rbf/sigmoid private double coef0; // for poly/sigmoid // these are for training only private double cache_size; // in MB private double eps; // stopping criteria private double C; // for C_SVC, EPSILON_SVR and NU_SVR private int nr_weight; // for C_SVC private int[] weight_label; // for C_SVC private double[] weight; // for C_SVC private double nu; // for NU_SVC, ONE_CLASS, and NU_SVR private double p; // for EPSILON_SVR private int shrinking; // use the shrinking heuristics private int probability; // do probability estimates public ParameterSVM() { this(SVMParameterHelper.regressionEpsilonSVR()); initializeProperties(); } public ParameterSVM(double nu) { this(SVMParameterHelper.standard()); setNu(nu); } public ParameterSVM(ParameterSVM parameterSVM) { super(ConstantsRegressionMethods.MODEL_SVM); this.svmType = parameterSVM.svmType; this.kernelType = parameterSVM.kernelType; this.degree = parameterSVM.degree; this.gamma = parameterSVM.gamma; this.coef0 = parameterSVM.coef0; this.cache_size = parameterSVM.cache_size; this.eps = parameterSVM.eps; this.C = parameterSVM.C; this.nr_weight = parameterSVM.nr_weight; this.weight_label = parameterSVM.weight_label; this.weight = parameterSVM.weight; this.nu = parameterSVM.nu; this.p = parameterSVM.p; this.shrinking = parameterSVM.shrinking; this.probability = parameterSVM.probability; initializeProperties(); } public ParameterSVM(svm_parameter svmParameter) { super(ConstantsRegressionMethods.MODEL_SVM); this.svmType = svmParameter.svm_type; this.kernelType = svmParameter.kernel_type; this.degree = svmParameter.degree; this.gamma = svmParameter.gamma; this.coef0 = svmParameter.coef0; this.cache_size = svmParameter.cache_size; this.eps = svmParameter.eps; this.C = svmParameter.C; this.nr_weight = svmParameter.nr_weight; this.weight_label = svmParameter.weight_label; this.weight = svmParameter.weight; this.nu = svmParameter.nu; this.p = svmParameter.p; this.shrinking = svmParameter.shrinking; this.probability = svmParameter.probability; initializeProperties(); } private void initializeProperties(){ if(svmType != svm_parameter.EPSILON_SVR) { System.out.println("Error: only Epsilon support vector regression possible!"); System.out.println("Error: opsilon support vector regression possible!"); System.out.println("Error: opsilon support vector regression possible!"); throw new RuntimeException("Only Epsilon support vector regression possible!"); } setSVMRegressionType(svmType); setKernelType(kernelType); setEpsilon(eps); setC(C); setGamma(gamma); } public svm_parameter getSvmParameter(){ svm_parameter svmParameter = new svm_parameter(); svmParameter.svm_type = this.svmType; svmParameter.kernel_type = this.kernelType; svmParameter.degree = this.degree; svmParameter.gamma = this.gamma; svmParameter.coef0 = this.coef0; svmParameter.cache_size = this.cache_size; svmParameter.eps = this.eps; svmParameter.C = this.C; svmParameter.nr_weight = this.nr_weight; svmParameter.weight_label = this.weight_label; svmParameter.weight = this.weight; svmParameter.nu = this.nu; svmParameter.p = this.p; svmParameter.shrinking = this.shrinking; svmParameter.probability = this.probability; return svmParameter; } protected ParameterSVM(String nameRegressionMethod) { super(nameRegressionMethod); } public double getGamma(){ return gamma; } public double getNu(){ return nu; } public void setGamma(double gamma){ this.gamma = gamma; properties.put(TAG_GAMMA, Double.toString(gamma)); } public void setNu(double nu){ this.nu = nu; properties.put(TAG_NU, Double.toString(nu)); } public void setSVMRegressionType(int svmType) { if(svmType != svm_parameter.EPSILON_SVR) { throw new RuntimeException("Only Epsilon support vector regression possible!"); } this.svmType = svmType; properties.put(TAG_SVM_TYPE, Integer.toString(svmType)); } public void setEpsilon(double eps) { this.eps = eps; properties.put(TAG_EPSILON, Double.toString(eps)); } public void setKernelType(int kernelType) { this.kernelType = kernelType; properties.put(TAG_KERNEL, Integer.toString(kernelType)); } public void setC(double C) { this.C = C; properties.put(TAG_C, Double.toString(C)); } @Override public int compareTo(ParameterRegressionMethod o) { int cmp = 0; ParameterSVM parameterSVM = (ParameterSVM)o; if(svmType > parameterSVM.svmType) { cmp=1; } else if(svmType < parameterSVM.svmType) { cmp=-1; } if(cmp==0) { if (kernelType > parameterSVM.kernelType) { cmp = 1; } else if (kernelType < parameterSVM.kernelType) { cmp = -1; } } if(cmp==0) { if (degree > parameterSVM.degree) { cmp = 1; } else if (degree < parameterSVM.degree) { cmp = -1; } } if(cmp==0) { if (gamma > parameterSVM.gamma) { cmp = 1; } else if (gamma < parameterSVM.gamma) { cmp = -1; } } if(cmp==0) { if (nu > parameterSVM.nu) { cmp = 1; } else if (nu < parameterSVM.nu) { cmp = -1; } } if(cmp==0) { if (C > parameterSVM.C) { cmp = 1; } else if (C < parameterSVM.C) { cmp = -1; } } if(cmp==0) { if (eps > parameterSVM.eps) { cmp = 1; } else if (eps < parameterSVM.eps) { cmp = -1; } } return cmp; } @Override public boolean equals(Object obj) { boolean eq = super.equals(obj); if(!eq){ return false; } if(!(obj instanceof ParameterSVM)){ return false; } ParameterSVM parameter = (ParameterSVM)obj; if(nr_weight!=parameter.nr_weight){ return false; } else if(Math.abs(nr_weight-parameter.nr_weight) > Matrix.TINY08){ return false; } else if(Math.abs(gamma -parameter.gamma) > Matrix.TINY08){ return false; } else if(Math.abs(eps -parameter.eps) > Matrix.TINY08){ return false; } else if(Math.abs(C -parameter.C) > Matrix.TINY08){ return false; } else if(Math.abs(nu -parameter.nu) > Matrix.TINY08){ return false; } else if(Math.abs(cache_size -parameter.cache_size) > Matrix.TINY08){ return false; } else if(Math.abs(coef0 -parameter.coef0) > Matrix.TINY08){ return false; } else if(Math.abs(this.p-parameter.p) > Matrix.TINY08){ return false; } else if(svmType != parameter.svmType){ return false; }else if(degree != parameter.degree){ return false; }else if(kernelType != parameter.kernelType){ return false; }else if(probability != parameter.probability){ return false; }else if(shrinking != parameter.shrinking){ return false; } else if(!Arrays.equals(weight, parameter.weight)){ return false; } else if(!Arrays.equals(weight_label, parameter.weight_label)){ return false; } return eq; } @Override protected void decodeProperties2Parameter() { svmType = Integer.parseInt(properties.getProperty(TAG_SVM_TYPE)); kernelType = Integer.parseInt(properties.getProperty(TAG_KERNEL)); C = Double.parseDouble(properties.getProperty(TAG_C)); gamma = Double.parseDouble(properties.getProperty(TAG_GAMMA)); eps = Double.parseDouble(properties.getProperty(TAG_EPSILON)); } @Override public String toString() { DecimalFormat df = new DecimalFormat("0.0###"); final StringBuilder sb = new StringBuilder("ParameterSVM{"); sb.append("name=").append(getName()); sb.append(" svm type=").append(SVMParameterHelper.getSVMType(svmType)); sb.append(" kernel_type=").append(SVMParameterHelper.getKernelType(kernelType)); sb.append(" degree=").append(degree); sb.append(" gamma=").append(df.format(gamma)); sb.append(" coef0=").append(df.format(coef0)); sb.append(" cache_size=").append(df.format(cache_size)); sb.append(" eps=").append(df.format(eps)); sb.append(" C=").append(df.format(C)); sb.append(" nr_weight=").append(nr_weight); sb.append(" nu=").append(df.format(nu)); sb.append(" p=").append(df.format(p)); sb.append(" shrinking=").append(shrinking); sb.append(" probability=").append(probability); sb.append('}'); return sb.toString(); } public static List getHeader(){ List li = ParameterRegressionMethod.getHeader(); li.add(TAG_SVM_TYPE); li.add(TAG_KERNEL); li.add(TAG_DEGREE); li.add(TAG_GAMMA); li.add(TAG_COEF0); li.add(TAG_CACHE_SIZE); li.add(TAG_EPSILON); li.add(TAG_C); li.add(TAG_NR_WEIGHT); li.add(TAG_NU); li.add(TAG_P); li.add(TAG_SHRINKING); li.add(TAG_PROBABILITY); return li; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy