com.actelion.research.chem.AromaticityResolver Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of openchemlib Show documentation
Show all versions of openchemlib Show documentation
Open Source Chemistry Library
/*
* Copyright (c) 1997 - 2016
* Actelion Pharmaceuticals Ltd.
* Gewerbestrasse 16
* CH-4123 Allschwil, Switzerland
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of the the copyright holder nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
package com.actelion.research.chem;
public class AromaticityResolver {
ExtendedMolecule mMol;
private boolean mAllHydrogensAreExplicit;
private boolean[] mIsDelocalizedAtom,mIsDelocalizedBond;
private int mAromaticAtoms,mAromaticBonds,mPiElectronsAdded;
/**
* Creates a new AromaticityResolver for molecule mol.
* @param mol
*/
public AromaticityResolver(ExtendedMolecule mol) {
mMol = mol;
}
/**
* This method promotes all necessary bonds of the defined delocalized part of the molecule
* from single to double bonds in order to create a valid delocalized system
* of conjugated single and double bonds.
* The delocalized part of the molecule may be defined by passing an array
* to isAromaticBond that has all bonds flagged, which are part of a delocalized area.
* In this case these bonds are assumed to have bond type cBondTypeSingle.
* Alternatively, one may pass null and indicate affected bonds with bond type cBondTypeDelocalized.
* Non-cyclic atom chains defined to be delocalized are treated depending
* on whether we have a molecule or a query fragment. For fragments the respective bond
* types will be set to cBondTypeDelocalized; for molecules the chain will
* have alternating single and double bonds starting with double at a non-ring end.
* @return true if all bonds of the delocalized area could be consistently converted.
*/
public boolean locateDelocalizedDoubleBonds(boolean[] isAromaticBond) {
return locateDelocalizedDoubleBonds(isAromaticBond, false, false);
}
/**
* This method promotes all necessary bonds of the defined delocalized part of the molecule
* from single to double bonds in order to create a valid delocalized system
* of conjugated single and double bonds.
* The delocalized part of the molecule may be defined by passing an array
* to isAromaticBond that has all bonds flagged, which are part of a delocalized area.
* In this case these bonds are assumed to have bond type cBondTypeSingle.
* Alternatively, one may pass null and indicate affected bonds with bond type cBondTypeDelocalized.
* Non-cyclic atom chains defined to be delocalized are treated depending
* on whether we have a molecule or a query fragment. For fragments the respective bond
* types will be set to cBondTypeDelocalized; for molecules the chain will
* have alternating single and double bonds starting with double at a non-ring end.
* @param isAromaticBond if null, then bond type cBondTypeDelocalized is used to indicate delocalized bonds
* @param mayChangeAtomCharges true if input molecule doesn't carry atom charges and these may be added to achieve aromaticity
* @param allHydrogensAreExplicit true this method can rely on all hydrogens being explicitly present
* @return true if all bonds of the delocalized area could be consistently converted.
*/
public boolean locateDelocalizedDoubleBonds(boolean[] isAromaticBond, boolean mayChangeAtomCharges, boolean allHydrogensAreExplicit) {
mMol.ensureHelperArrays(Molecule.cHelperNeighbours);
if (isAromaticBond != null) {
mIsDelocalizedBond = isAromaticBond;
}
else {
mIsDelocalizedBond = new boolean[mMol.getBonds()];
for (int bond=0; bond 1)
return true;
return false;
}
private int getNextOuterDelocalizedConnIndex(int atom, int previousAtom, int[] sharedDelocalizedRingCount) {
for (int i=0; i 0))
protectAtom(atom);
}
private void protectAtom(int atom) {
if (mIsDelocalizedAtom[atom]) {
mIsDelocalizedAtom[atom] = false;
mAromaticAtoms--;
}
for (int i=0; i 1) { // bridgehead atom
if (!checkAtomTypePi1(atom, false)) {
possible = false;
break;
}
}
else { // non-bridgehead in 5- or 7-membered ring
int priority = (ringSize == 5) ?
checkAtomTypeLeak5(atom, false) : checkAtomTypeLeak7(atom, false);
if (!checkAtomTypePi1(atom, false)) {
if (leakPriority == 10) {
possible = false;
break;
}
leakAtom = atom;
leakPriority = 20; // MAX
}
else if (leakPriority < priority) {
leakPriority = priority;
leakAtom = atom;
}
}
}
if (possible) {
for (int atom : ringSet.getRingAtoms(ring)) {
if (atom == leakAtom) {
if (ringSize == 5)
checkAtomTypeLeak5(atom, true); // 5-membered
else
checkAtomTypeLeak7(atom, true); // 3- or 7-membered
protectAtom(atom);
}
else {
checkAtomTypePi1(atom, true);
}
}
}
}
}
}
// From here locate delocalized strings of atoms, which are not member
// of an aromatic ring. Protect preferred atoms and add obvious atom charges.
// count for every atom the number of delocalized bonds attached
int[] delocalizedNeighbourCount = new int[mMol.getAtoms()];
boolean[] hasMetalLigandBond = new boolean[mMol.getAtoms()];
for (int bond=0; bond 0) {
checkAtomTypeLeakNonRing(maxAtom, true);
protectAtom(maxAtom);
}
}
}
}
}
}
/**
* Checks, whether the atom is compatible with an aromatic atom of the type
* that carries one half of a delocalized double bond.
* @param atom
* @param correctCharge if true then may add a charge to make the atom compatible
* @return
*/
private boolean checkAtomTypePi1(int atom, boolean correctCharge) {
int atomicNo = mMol.getAtomicNo(atom);
if ((atomicNo >=5 && atomicNo <= 8)
|| atomicNo == 15 || atomicNo == 16 || atomicNo == 33 || atomicNo == 34 || atomicNo == 52) { // P,S,As,Se,Te
// Old logic seems fishy to me; TLS 10Dec2020
// int freeValence = mMol.getFreeValence(atom);
// if (freeValence == 1 || freeValence == 2) // we allow one more free valence, because the atom may have a missing charge
// return true;
int freeValence = mMol.getLowestFreeValence(atom);
if (freeValence != 0)
return true;
if (mMol.getAtomCharge(atom) == 0) {
if ((atomicNo == 15 || atomicNo == 33) /* && freeValence == 3 */) {
if (correctCharge)
mMol.setAtomCharge(atom, 1);
return true;
}
if ((atomicNo == 16 || atomicNo == 34 || atomicNo == 52) /* && freeValence == 4 */) {
if (correctCharge)
mMol.setAtomCharge(atom, 1);
return true;
}
if (atomicNo == 5 /* && freeValence == 0 */) {
if (correctCharge)
mMol.setAtomCharge(atom, -1);
return true;
}
if ((atomicNo == 7 || atomicNo == 8) /* && freeValence == 0 */) {
if (correctCharge)
mMol.setAtomCharge(atom, 1);
return true;
}
}
}
return false;
}
/**
* Checks, whether the atom is compatible with that aromatic atom of
* a 5-membered ring that supplies the additional electron pair.
* @param atom
* @param correctCharge if true then may add a charge to make the atom compatible
* @return 0 (not compatible) or priority to be used (higher numbers have higher priority)
*/
private int checkAtomTypeLeak5(int atom, boolean correctCharge) {
if (mMol.getAtomicNo(atom) == 7) {
if (mMol.getAllConnAtoms(atom) == 3)
return 6;
else if (mMol.getConnAtoms(atom) == 2)
return 4;
}
else if (mMol.getAtomicNo(atom) == 8) {
return 10;
}
else if (mMol.getAtomicNo(atom) == 15 || mMol.getAtomicNo(atom) == 33) {
if (mMol.getConnAtoms(atom) == 3)
return 8;
}
else if (mMol.getAtomicNo(atom) == 16 || mMol.getAtomicNo(atom) == 34 || mMol.getAtomicNo(atom) == 52) {
if (mMol.getConnAtoms(atom) == 2)
return 12;
}
else if (mMol.getAtomicNo(atom) == 6) {
if (correctCharge)
mMol.setAtomCharge(atom, -1);
return (mMol.getAllConnAtoms(atom) != mMol.getAllConnAtomsPlusMetalBonds(atom)) ? 2 : 3;
}
return 0;
}
/**
* Checks, whether the atom is compatible with that aromatic atom of
* a 3- or 7-membered ring that supplies the empty orbital.
* @param atom
* @param correctCharge if true then may add a charge to make the atom compatible
* @return 0 (not compatible) or priority to be used (higher numbers have higher priority)
*/
private int checkAtomTypeLeak7(int atom, boolean correctCharge) {
if (mAllHydrogensAreExplicit) {
if (mMol.getAllConnAtoms(atom) != 3)
return 0;
}
else {
if (mMol.getAllConnAtoms(atom) > 3)
return 0;
}
if (mMol.getAtomicNo(atom) == 6) {
if (correctCharge)
mMol.setAtomCharge(atom, 1);
return 2;
}
if (mMol.getAtomicNo(atom) == 5) {
return 4;
}
return 0;
}
/**
* Checks, whether the atom is compatible with the (typically charged) atom
* in a delocalized chain of an odd number of atoms that does not carry a pi bond.
* @param atom
* @param correctCharge if true then may add a charge to make the atom compatible
* @return 0 (not compatible) or priority to be used (higher numbers have higher priority)
*/
private int checkAtomTypeLeakNonRing(int atom, boolean correctCharge) {
if (mMol.getAtomCharge(atom) != 0)
return 0;
if (mAllHydrogensAreExplicit) {
if (mMol.getAtomicNo(atom) == 5) {
if (mMol.getOccupiedValence(atom) != 2)
return 0;
if (correctCharge)
mMol.setAtomCharge(atom, 1);
return 1;
}
if (mMol.getAtomicNo(atom) == 7) {
if (mMol.getOccupiedValence(atom) != 2)
return 0;
if (correctCharge)
mMol.setAtomCharge(atom, -1);
return hasMetalNeighbour(atom) ? 6 : 3;
}
if (mMol.getAtomicNo(atom) == 8) {
if (mMol.getOccupiedValence(atom) != 1)
return 0;
if (correctCharge)
mMol.setAtomCharge(atom, -1);
return hasMetalNeighbour(atom) ? 7 : 4;
}
if (mMol.getAtomicNo(atom) == 16) {
if (mMol.getOccupiedValence(atom) != 1)
return 0;
if (correctCharge)
mMol.setAtomCharge(atom, -1);
return hasMetalNeighbour(atom) ? 5 : 2;
}
if (mMol.getAtomicNo(atom) == 34) {
if (mMol.getOccupiedValence(atom) != 1)
return 0;
if (correctCharge)
mMol.setAtomCharge(atom, -1);
return hasMetalNeighbour(atom) ? 4 : 1;
}
}
else {
if (mMol.getAtomicNo(atom) == 5) {
if (mMol.getOccupiedValence(atom) > 2)
return 0;
if (correctCharge)
mMol.setAtomCharge(atom, 1);
return 1;
}
if (mMol.getAtomicNo(atom) == 7) {
if (mMol.getOccupiedValence(atom) > 2)
return 0;
if (correctCharge)
mMol.setAtomCharge(atom, -1);
return hasMetalNeighbour(atom) ? 5 : 3;
}
if (mMol.getAtomicNo(atom) == 8) {
if (mMol.getOccupiedValence(atom) > 1)
return 0;
if (correctCharge)
mMol.setAtomCharge(atom, -1);
return hasMetalNeighbour(atom) ? 7 : 4;
}
if (mMol.getAtomicNo(atom) == 16) {
if (mMol.getOccupiedValence(atom) > 1)
return 0;
if (correctCharge)
mMol.setAtomCharge(atom, -1);
return hasMetalNeighbour(atom) ? 5 : 2;
}
}
return 0;
}
private boolean hasMetalNeighbour(int atom) {
for (int i=0; i
© 2015 - 2025 Weber Informatics LLC | Privacy Policy