org.openmolecules.chem.conf.gen.RotatableBond Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of openchemlib Show documentation
Show all versions of openchemlib Show documentation
Open Source Chemistry Library
/*
* Copyright 2013-2020 Thomas Sander, openmolecules.org
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* @author Thomas Sander
*/
package org.openmolecules.chem.conf.gen;
import com.actelion.research.chem.Coordinates;
import com.actelion.research.chem.Molecule;
import com.actelion.research.chem.StereoMolecule;
import com.actelion.research.chem.conf.*;
import java.util.Random;
/**
* A RotatableBond knows the two rigid fragments within a molecule
* that are connected by this bond. It also knows about possible torsion
* states with associated likelyhoods, which are taken from COD statistics
* and modified to account for collisions due to bulky groups in the molecule.
* It knows the smaller half of the molecule and rotate the smaller half to
* a given torsion angle.
*/
public class RotatableBond {
private static final double ANGLE_TOLERANCE = 0.001f; // limit for considering bonds as parallel
// For every optimum torsion we check for collisions and in case we try, whether left or right
// range ends are substantially better.
private static final double ACCEPTABLE_CENTER_STRAIN = 0.05f; // if we have less strain than this we don't check whether range edges improve strain
private static final double NECESSARY_EDGE_STRAIN_IMPROVEMENT = 0.02f; // necessary strain improvement to use edge torsion rather than center torsion
private static final double MAXIMUM_CENTER_STRAIN = 0.2f; // if center torsion is above this limit we refuse that torsion
// If no acceptable torsion remains after checking and attempting to use range edge values,
// we try to modify the least bad torsion stepwise until it is acceptable.
private static final int ESCAPE_ANGLE = 8; // degrees to rotate the rotatable bond to escape collisions
private static final int ESCAPE_STEPS = 4; // how often we apply this rotation trying to solve the collision
private static final double MIN_ESCAPE_GAIN_PER_STEP = 0.05;
private static final short[] SIXTY_DEGREE_TORSION = { 0, 60, 120, 180, 240, 300};
private static final short[] SIXTY_DEGREE_FREQUENCY = { 17, 17, 17, 17, 17, 17};
private static final short[][] SIXTY_DEGREE_RANGE = { {-20,20},{40,80},{100,140},{160,200},{220,260},{280,320}};
private RigidFragment mFragment1,mFragment2;
private Random mRandom;
private int mRotationCenter,mBond,mFragmentNo1,mFragmentNo2;
private boolean mBondAtomsInFragmentOrder;
private float mBondRelevance;
private short[] mTorsion;
private short[] mFrequency;
private short[][] mTorsionRange;
private double[] mLikelyhood; // considering directly connected rigid fragments (frequency and collision strain)
private int[] mTorsionAtom,mRearAtom,mSmallerSideAtomList;
public RotatableBond(StereoMolecule mol, int bond, int[] fragmentNo, int[] disconnectedFragmentNo,
int disconnectedFragmentSize, RigidFragment[] fragment, Random random) {
this(mol, bond, fragmentNo, disconnectedFragmentNo, disconnectedFragmentSize, fragment, random, false);
}
public RotatableBond(StereoMolecule mol, int bond, int[] fragmentNo, int[] disconnectedFragmentNo,
int disconnectedFragmentSize, RigidFragment[] fragment, Random random, boolean use60degreeSteps) {
mBond = bond;
mRandom = random;
mTorsionAtom = new int[4];
mRearAtom = new int[2];
TorsionDetail detail = new TorsionDetail();
if (TorsionDB.getTorsionID(mol, bond, mTorsionAtom, detail) != null) {
mRearAtom[0] = detail.getRearAtom(0);
mRearAtom[1] = detail.getRearAtom(1);
}
else {
predictAtomSequence(mol);
}
mFragmentNo1 = fragmentNo[mTorsionAtom[1]];
mFragmentNo2 = fragmentNo[mTorsionAtom[2]];
mFragment1 = fragment[mFragmentNo1];
mFragment2 = fragment[mFragmentNo2];
mBondAtomsInFragmentOrder = (fragmentNo[mol.getBondAtom(0, bond)] == mFragmentNo1);
if (use60degreeSteps) {
mTorsion = SIXTY_DEGREE_TORSION;
mFrequency = SIXTY_DEGREE_FREQUENCY;
mTorsionRange = SIXTY_DEGREE_RANGE;
}
else {
mTorsion = TorsionDB.getTorsions(detail.getID());
if (mTorsion == null) {
TorsionPrediction prediction = new TorsionPrediction(mol, mTorsionAtom);
mTorsion = prediction.getTorsions();
mFrequency = prediction.getTorsionFrequencies();
mTorsionRange = prediction.getTorsionRanges();
} else {
mFrequency = TorsionDB.getTorsionFrequencies(detail.getID());
mTorsionRange = TorsionDB.getTorsionRanges(detail.getID());
}
}
removeIllegalTorsions(mol);
removeEquivalentTorsions(mol);
mLikelyhood = new double[mTorsion.length];
findSmallerSideAtomList(mol, disconnectedFragmentNo, disconnectedFragmentSize);
}
public RigidFragment getFragment(int i) {
return (i == 0) ? mFragment1 : mFragment2;
}
public int getFragmentNo(int i) {
return (i == 0) ? mFragmentNo1 : mFragmentNo2;
}
private void predictAtomSequence(StereoMolecule mol) {
for (int i=0; i<2; i++) {
int centralAtom = mol.getBondAtom(i, mBond);
int rearAtom = mol.getBondAtom(1-i, mBond);
// walk along sp-chains to first sp2 or sp3 atom
while (mol.getAtomPi(centralAtom) == 2
&& mol.getConnAtoms(centralAtom) == 2
&& mol.getAtomicNo(centralAtom) < 10) {
for (int j=0; j<2; j++) {
int connAtom = mol.getConnAtom(centralAtom, j);
if (connAtom != rearAtom) {
rearAtom = centralAtom;
centralAtom = connAtom;
break;
}
}
}
mTorsionAtom[i+1] = centralAtom;
mRearAtom[i] = rearAtom;
}
// A TorsionPrediction does not distinguish hetero atoms from carbons a positions 0 and 3.
// Therefore we can treat two sp2 neighbors as equivalent when predicting torsions.
if (mol.getAtomPi(mTorsionAtom[1]) == 0 && mol.getConnAtoms(mTorsionAtom[1]) == 3) {
mTorsionAtom[0] = -1;
}
else {
for (int i=0; i disconnectedFragmentSize-alkyneAtoms-memberCount) {
memberCount = disconnectedFragmentSize-alkyneAtoms-memberCount;
invert = true;
}
// if invert, then flag all linear alkyne atoms to be avoided
if (invert && alkyneAtoms != 0) {
int spAtom = mRearAtom[0];
int backAtom = mTorsionAtom[1];
while (mol.getAtomPi(spAtom) == 2
&& mol.getConnAtoms(spAtom) == 2
&& mol.getAtomicNo(spAtom) < 10) {
isMember[spAtom] = true;
for (int j=0; j<2; j++) {
int connAtom = mol.getConnAtom(spAtom, j);
if (connAtom != backAtom) {
backAtom = spAtom;
spAtom = connAtom;
break;
}
}
}
}
int memberNo = 0;
int fragmentNo = disconnectedFragmentNo[mTorsionAtom[1]];
mSmallerSideAtomList = new int[memberCount];
for (int atom=0; atom mFragment2.getCoreSize()) ? mFragment1 : mFragment2;
int largerFragmentNo = (mFragment1.getCoreSize() > mFragment2.getCoreSize()) ? mFragmentNo1 : mFragmentNo2;
isAttached[largerFragmentNo] = true;
int fragmentConformer = (fragmentPermutation == null) ? 0 : fragmentPermutation[largerFragmentNo];
for (int i=0; i Math.PI / 2) ?
froot.subC(fragment.getExtendedCoordinates(fragmentConformer, i))
: fragment.getExtendedCoordinates(fragmentConformer, i).subC(froot);
}
}
else {
Coordinates rotationAxis;
if (alpha < Math.PI - ANGLE_TOLERANCE) { // normal case, just rotate around the plane orthogonal
rotationAxis = uv.cross(fuv);
}
else { // special case both axes anti-parallel: for cross-product we need any vector being different from uv
if (Math.abs(uv.x) >= Math.abs(uv.y) && Math.abs(uv.x) >= Math.abs(uv.z))
rotationAxis = new Coordinates(-(uv.y + uv.z) / uv.x, 1.0, 1.0);
else if (Math.abs(uv.y) >= Math.abs(uv.x) && Math.abs(uv.y) >= Math.abs(uv.z))
rotationAxis = new Coordinates(1.0, -(uv.x + uv.z) / uv.y, 1.0);
else
rotationAxis = new Coordinates(1.0, 1.0, -(uv.x + uv.y) / uv.z);
}
double[][] m = getRotationMatrix(rotationAxis.unit(), alpha);
for (int i=0; i 1)
|| (mFragment2.getConformerCount() > 1);
//System.out.print("connectFragments() original torsions:"); for (int t=0; t NECESSARY_EDGE_STRAIN_IMPROVEMENT) {
if (isFirstAlternative) {
mTorsion[t] = mTorsionRange[t][r];
mFrequency[t] = (short)((mFrequency[t]+1) / 2);
double relativeStrain = rangeStrain / MAXIMUM_CENTER_STRAIN;
mLikelyhood[t] = mFrequency[t] * (1f - relativeStrain * relativeStrain);
usedStrain = rangeStrain;
torsionEdgeUsed = r+1;
isFirstAlternative = false;
}
else {
double relativeStrain = rangeStrain / MAXIMUM_CENTER_STRAIN;
insertTorsion(t, r, relativeStrain);
if (mLikelyhood[t+1] > mLikelyhood[t]) {
usedStrain = rangeStrain;
torsionEdgeUsed = r+1;
}
t++;
}
foundAlternative = true;
}
}
if (!foundAlternative /* && strain < MAXIMUM_CENTER_STRAIN really bad ones should get a negative likelyhood */) {
double relativeStrain = centerStrain / MAXIMUM_CENTER_STRAIN;
mLikelyhood[t] = mFrequency[t] * (1f - relativeStrain * relativeStrain);
}
}
if (mLikelyhood[bestTorsionIndex] < mLikelyhood[t]) {
bestTorsionIndex = t;
bestTorsionEdgeUsed = torsionEdgeUsed;
bestTorsionStrain = usedStrain; // this is the strain with the highest likelyhood (not necessarily the lowest strain)
}
}
double totalLikelyhood = 0f;
for (int t=0; t 0f)
totalLikelyhood += mLikelyhood[t];
// make sure, we have at least one torsion with positive likelyhood, because only those are considered later
if (mLikelyhood[bestTorsionIndex] <= 0f) {
mLikelyhood[bestTorsionIndex] = 1.0f;
int angle = bestTorsionEdgeUsed == 1 ? -ESCAPE_ANGLE
: bestTorsionEdgeUsed == 2 ? ESCAPE_ANGLE
: (mRandom.nextDouble() < 0.5) ? -ESCAPE_ANGLE : ESCAPE_ANGLE;
for (int step=1; step<=ESCAPE_STEPS; step++) {
currentTorsion = (short)(mTorsion[bestTorsionIndex]+angle*step);
double[][] m = getRotationMatrix(uv, Math.PI * currentTorsion / 180 - startTorsion);
for (int i=0; i 0f)
count++;
short[] newTorsion = new short[count];
short[] newFrequency = new short[count];
double[] newLikelyhood = new double[count];
for (int i=0; i
© 2015 - 2025 Weber Informatics LLC | Privacy Policy