smile.clustering.KMeans Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of openchemlib Show documentation
Show all versions of openchemlib Show documentation
Open Source Chemistry Library
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.clustering;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import smile.math.Math;
import smile.util.MulticoreExecutor;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.Callable;
/**
* K-Means clustering. The algorithm partitions n observations into k clusters in which
* each observation belongs to the cluster with the nearest mean.
* Although finding an exact solution to the k-means problem for arbitrary
* input is NP-hard, the standard approach to finding an approximate solution
* (often called Lloyd's algorithm or the k-means algorithm) is used widely
* and frequently finds reasonable solutions quickly.
*
* However, the k-means algorithm has at least two major theoretic shortcomings:
*
* - First, it has been shown that the worst case running time of the
* algorithm is super-polynomial in the input size.
*
- Second, the approximation found can be arbitrarily bad with respect
* to the objective function compared to the optimal learn.
*
* In this implementation, we use k-means++ which addresses the second of these
* obstacles by specifying a procedure to initialize the cluster centers before
* proceeding with the standard k-means optimization iterations. With the
* k-means++ initialization, the algorithm is guaranteed to find a solution
* that is O(log k) competitive to the optimal k-means solution.
*
* We also use k-d trees to speed up each k-means step as described in the filter
* algorithm by Kanungo, et al.
*
* K-means is a hard clustering method, i.e. each sample is assigned to
* a specific cluster. In contrast, soft clustering, e.g. the
* Expectation-Maximization algorithm for Gaussian mixtures, assign samples
* to different clusters with different probabilities.
*
*
References
*
* - Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman, and Angela Y. Wu. An Efficient k-Means Clustering Algorithm: Analysis and Implementation. IEEE TRANS. PAMI, 2002.
* - D. Arthur and S. Vassilvitskii. "K-means++: the advantages of careful seeding". ACM-SIAM symposium on Discrete algorithms, 1027-1035, 2007.
* - Anna D. Peterson, Arka P. Ghosh and Ranjan Maitra. A systematic evaluation of different methods for initializing the K-means clustering algorithm. 2010.
*
*
* @see XMeans
* @see GMeans
* @see CLARANS
* @see SIB
* @see smile.vq.SOM
* @see smile.vq.NeuralGas
* @see BIRCH
* @see BBDTree
*
* @author Haifeng Li
*/
public class KMeans extends PartitionClustering {
private static final long serialVersionUID = 1L;
private static final Logger logger = LoggerFactory.getLogger(KMeans.class);
/**
* The total distortion.
*/
double distortion;
/**
* The centroids of each cluster.
*/
double[][] centroids;
/**
* Constructor.
*/
KMeans() {
}
/**
* Returns the distortion.
*/
public double distortion() {
return distortion;
}
/**
* Returns the centroids.
*/
public double[][] centroids() {
return centroids;
}
/**
* Cluster a new instance.
* @param x a new instance.
* @return the cluster label, which is the index of nearest centroid.
*/
@Override
public int predict(double[] x) {
double minDist = Double.MAX_VALUE;
int bestCluster = 0;
for (int i = 0; i < k; i++) {
double dist = Math.squaredDistance(x, centroids[i]);
if (dist < minDist) {
minDist = dist;
bestCluster = i;
}
}
return bestCluster;
}
/**
* Constructor. Clustering data into k clusters up to 100 iterations.
* @param data the input data of which each row is a sample.
* @param k the number of clusters.
*/
public KMeans(double[][] data, int k) {
this(data, k, 100);
}
/**
* Constructor. Clustering data into k clusters.
* @param data the input data of which each row is a sample.
* @param k the number of clusters.
* @param maxIter the maximum number of iterations for each running.
*/
public KMeans(double[][] data, int k, int maxIter) {
this(new BBDTree(data), data, k, maxIter);
}
/**
* Constructor. Clustering data into k clusters.
* @param bbd the BBD-tree of data for fast clustering.
* @param data the input data of which each row is a sample.
* @param k the number of clusters.
* @param maxIter the maximum number of iterations for each running.
*/
KMeans(BBDTree bbd, double[][] data, int k, int maxIter) {
if (k < 2) {
throw new IllegalArgumentException("Invalid number of clusters: " + k);
}
if (maxIter <= 0) {
throw new IllegalArgumentException("Invalid maximum number of iterations: " + maxIter);
}
int n = data.length;
int d = data[0].length;
this.k = k;
distortion = Double.MAX_VALUE;
y = seed(data, k, ClusteringDistance.EUCLIDEAN);
size = new int[k];
centroids = new double[k][d];
for (int i = 0; i < n; i++) {
size[y[i]]++;
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < d; j++) {
centroids[y[i]][j] += data[i][j];
}
}
for (int i = 0; i < k; i++) {
for (int j = 0; j < d; j++) {
centroids[i][j] /= size[i];
}
}
double[][] sums = new double[k][d];
for (int iter = 1; iter <= maxIter; iter++) {
double dist = bbd.clustering(centroids, sums, size, y);
for (int i = 0; i < k; i++) {
if (size[i] > 0) {
for (int j = 0; j < d; j++) {
centroids[i][j] = sums[i][j] / size[i];
}
}
}
if (distortion <= dist) {
break;
} else {
distortion = dist;
}
}
}
/**
* Clustering data into k clusters. Run the algorithm for given times
* and return the best one with smallest distortion.
* @param data the input data of which each row is a sample.
* @param k the number of clusters.
* @param maxIter the maximum number of iterations for each running.
* @param runs the number of runs of K-Means algorithm.
*/
public KMeans(double[][] data, int k, int maxIter, int runs) {
if (k < 2) {
throw new IllegalArgumentException("Invalid number of clusters: " + k);
}
if (maxIter <= 0) {
throw new IllegalArgumentException("Invalid maximum number of iterations: " + maxIter);
}
if (runs <= 0) {
throw new IllegalArgumentException("Invalid number of runs: " + runs);
}
BBDTree bbd = new BBDTree(data);
List tasks = new ArrayList<>();
for (int i = 0; i < runs; i++) {
tasks.add(new KMeansThread(bbd, data, k, maxIter));
}
KMeans best = new KMeans();
best.distortion = Double.MAX_VALUE;
try {
List clusters = MulticoreExecutor.run(tasks);
for (KMeans kmeans : clusters) {
if (kmeans.distortion < best.distortion) {
best = kmeans;
}
}
} catch (Exception ex) {
logger.error("Failed to run K-Means on multi-core", ex);
for (int i = 0; i < runs; i++) {
KMeans kmeans = lloyd(data, k, maxIter);
if (kmeans.distortion < best.distortion) {
best = kmeans;
}
}
}
this.k = best.k;
this.distortion = best.distortion;
this.centroids = best.centroids;
this.y = best.y;
this.size = best.size;
}
/**
* Adapter for running BBD-Tree based K-Means algorithm in thread pool.
*/
static class KMeansThread implements Callable {
final BBDTree bbd;
final double[][] data;
final int k;
final int maxIter;
KMeansThread(BBDTree bbd, double[][] data, int k, int maxIter) {
this.bbd = bbd;
this.data = data;
this.k = k;
this.maxIter = maxIter;
}
@Override
public KMeans call() {
return new KMeans(bbd, data, k, maxIter);
}
}
/**
* The implementation of Lloyd algorithm as a benchmark. The data may
* contain missing values (i.e. Double.NaN). The algorithm runs up to
* 100 iterations.
* @param data the input data of which each row is a sample.
* @param k the number of clusters.
*/
public static KMeans lloyd(double[][] data, int k) {
return lloyd(data, k, 100);
}
/**
* The implementation of Lloyd algorithm as a benchmark. The data may
* contain missing values (i.e. Double.NaN).
* @param data the input data of which each row is a sample.
* @param k the number of clusters.
* @param maxIter the maximum number of iterations for each running.
*/
public static KMeans lloyd(double[][] data, int k, int maxIter) {
if (k < 2) {
throw new IllegalArgumentException("Invalid number of clusters: " + k);
}
if (maxIter <= 0) {
throw new IllegalArgumentException("Invalid maximum number of iterations: " + maxIter);
}
int n = data.length;
int d = data[0].length;
int[][] nd = new int[k][d]; // The number of non-missing values per cluster per variable.
double distortion = Double.MAX_VALUE;
int[] size = new int[k];
double[][] centroids = new double[k][d];
int[] y = seed(data, k, ClusteringDistance.EUCLIDEAN_MISSING_VALUES);
int np = MulticoreExecutor.getThreadPoolSize();
List tasks = null;
if (n >= 1000 && np >= 2) {
tasks = new ArrayList<>(np + 1);
int step = n / np;
if (step < 100) {
step = 100;
}
int start = 0;
int end = step;
for (int i = 0; i < np-1; i++) {
tasks.add(new LloydThread(data, centroids, y, start, end));
start += step;
end += step;
}
tasks.add(new LloydThread(data, centroids, y, start, n));
}
for (int iter = 0; iter < maxIter; iter++) {
Arrays.fill(size, 0);
for (int i = 0; i < k; i++) {
Arrays.fill(centroids[i], 0);
Arrays.fill(nd[i], 0);
}
for (int i = 0; i < n; i++) {
int m = y[i];
size[m]++;
for (int j = 0; j < d; j++) {
if (!Double.isNaN(data[i][j])) {
centroids[m][j] += data[i][j];
nd[m][j]++;
}
}
}
for (int i = 0; i < k; i++) {
for (int j = 0; j < d; j++) {
centroids[i][j] /= nd[i][j];
}
}
double wcss = Double.NaN;
if (tasks != null) {
try {
wcss = 0.0;
for (double ss : MulticoreExecutor.run(tasks)) {
wcss += ss;
}
} catch (Exception ex) {
logger.error("Failed to run K-Means on multi-core", ex);
wcss = Double.NaN;
}
}
if (Double.isNaN(wcss)) {
wcss = 0.0;
for (int i = 0; i < n; i++) {
double nearest = Double.MAX_VALUE;
for (int j = 0; j < k; j++) {
double dist = squaredDistance(data[i], centroids[j]);
if (nearest > dist) {
y[i] = j;
nearest = dist;
}
}
wcss += nearest;
}
}
if (distortion <= wcss) {
break;
} else {
distortion = wcss;
}
}
// In case of early stop, we should recalculate centroids and clusterSize.
Arrays.fill(size, 0);
for (int i = 0; i < k; i++) {
Arrays.fill(centroids[i], 0);
Arrays.fill(nd[i], 0);
}
for (int i = 0; i < n; i++) {
int m = y[i];
size[m]++;
for (int j = 0; j < d; j++) {
if (!Double.isNaN(data[i][j])) {
centroids[m][j] += data[i][j];
nd[m][j]++;
}
}
}
for (int i = 0; i < k; i++) {
for (int j = 0; j < d; j++) {
centroids[i][j] /= nd[i][j];
}
}
KMeans kmeans = new KMeans();
kmeans.k = k;
kmeans.distortion = distortion;
kmeans.size = size;
kmeans.centroids = centroids;
kmeans.y = y;
return kmeans;
}
/**
* The implementation of Lloyd algorithm as a benchmark. Run the algorithm
* multiple times and return the best one in terms of smallest distortion.
* The data may contain missing values (i.e. Double.NaN).
* @param data the input data of which each row is a sample.
* @param k the number of clusters.
* @param maxIter the maximum number of iterations for each running.
* @param runs the number of runs of K-Means algorithm.
*/
public static KMeans lloyd(double[][] data, int k, int maxIter, int runs) {
if (k < 2) {
throw new IllegalArgumentException("Invalid number of clusters: " + k);
}
if (maxIter <= 0) {
throw new IllegalArgumentException("Invalid maximum number of iterations: " + maxIter);
}
if (runs <= 0) {
throw new IllegalArgumentException("Invalid number of runs: " + runs);
}
KMeans best = lloyd(data, k, maxIter);
for (int i = 1; i < runs; i++) {
KMeans kmeans = lloyd(data, k, maxIter);
if (kmeans.distortion < best.distortion) {
best = kmeans;
}
}
return best;
}
/**
* Adapter for running Lloyd algorithm in thread pool.
*/
static class LloydThread implements Callable {
/**
* The start index of data portion for this task.
*/
final int start;
/**
* The end index of data portion for this task.
*/
final int end;
final double[][] data;
final int k;
final double[][] centroids;
int[] y;
LloydThread(double[][] data, double[][] centroids, int[] y, int start, int end) {
this.data = data;
this.k = centroids.length;
this.y = y;
this.centroids = centroids;
this.start = start;
this.end = end;
}
@Override
public Double call() {
double wcss = 0.0;
for (int i = start; i < end; i++) {
double nearest = Double.MAX_VALUE;
for (int j = 0; j < k; j++) {
double dist = squaredDistance(data[i], centroids[j]);
if (nearest > dist) {
y[i] = j;
nearest = dist;
}
}
wcss += nearest;
}
return wcss;
}
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append(String.format("K-Means distortion: %.5f%n", distortion));
sb.append(String.format("Clusters of %d data points of dimension %d:%n", y.length, centroids[0].length));
for (int i = 0; i < k; i++) {
int r = (int) Math.round(1000.0 * size[i] / y.length);
sb.append(String.format("%3d\t%5d (%2d.%1d%%)%n", i, size[i], r / 10, r % 10));
}
return sb.toString();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy