smile.clustering.linkage.Linkage Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of openchemlib Show documentation
Show all versions of openchemlib Show documentation
Open Source Chemistry Library
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.clustering.linkage;
/**
* A measure of dissimilarity between clusters (i.e. sets of observations).
*
* References
*
* - Anil K. Jain, Richard C. Dubes. Algorithms for clustering data. 1988.
*
*
* @see smile.clustering.HierarchicalClustering
*
* @author Haifeng Li
*/
public abstract class Linkage {
/** The data size. */
int size;
/**
* Linearized proximity matrix to store the pair-wise distance measure
* as dissimilarity between clusters. To save space, we only need the
* lower half of matrix. And we use float instead of double to save
* more space, which also help speed performance. During the
* clustering, this matrix will be updated to reflect the dissimilarity
* of merged clusters.
*/
float[] proximity;
/** Initialize the linkage with the lower triangular proximity matrix. */
void init(double[][] proximity) {
size = proximity.length;
this.proximity = new float[size * (size+1) / 2];
// row wise
/*
for (int i = 0, k = 0; i < size; i++) {
double[] pi = proximity[i];
for (int j = 0; j <= i; j++, k++) {
this.proximity[k] = (float) pi[j];
}
}
*/
// column wise
for (int j = 0, k = 0; j < size; j++) {
for (int i = j; i < size; i++, k++) {
this.proximity[k] = (float) proximity[i][j];
}
}
}
int index(int i, int j) {
// row wise
// return i > j ? i*(i+1)/2 + j : j*(j+1)/2 + i;
// column wise
return i > j ? proximity.length - (size-j)*(size-j+1)/2 + i - j : proximity.length - (size-i)*(size-i+1)/2 + j - i;
}
/** Returns the proximity matrix size. */
public int size() {
return size;
}
/**
* Returns the distance/dissimilarity between two clusters/objects, which
* are indexed by integers.
*/
public float d(int i, int j) {
return proximity[index(i, j)];
}
/**
* Merge two clusters into one and update the proximity matrix.
* @param i cluster id.
* @param j cluster id.
*/
public abstract void merge(int i, int j);
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy