smile.clustering.linkage.WardLinkage Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of openchemlib Show documentation
Show all versions of openchemlib Show documentation
Open Source Chemistry Library
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.clustering.linkage;
/**
* Ward's linkage. Ward's linkage follows the analysis of variance approach
* The dissimilarity between two clusters is computed as the
* increase in the "error sum of squares" (ESS) after fusing two clusters
* into a single cluster. Ward's Method seeks to choose the successive
* clustering steps so as to minimize the increase in ESS at each step.
* Note that it is only valid for Euclidean distance based proximity matrix.
*
* @author Haifeng Li
*/
public class WardLinkage extends Linkage {
/**
* The number of samples in each cluster.
*/
private int[] n;
/**
* Constructor.
* @param proximity the proximity matrix to store the distance measure of
* dissimilarity. To save space, we only need the lower half of matrix.
*/
public WardLinkage(double[][] proximity) {
init(proximity);
n = new int[proximity.length];
for (int i = 0; i < n.length; i++) {
n[i] = 1;
}
for (int i = 0; i < this.proximity.length; i++) {
this.proximity[i] *= this.proximity[i];
}
}
@Override
public String toString() {
return "Ward's linkage";
}
@Override
public void merge(int i, int j) {
float nij = n[i] + n[j];
for (int k = 0; k < i; k++) {
proximity[index(i, k)] = (d(i, k) * (n[i] + n[k]) + d(j, k) * (n[j] + n[k]) - d(j, i) * n[k]) / (nij + n[k]);
}
for (int k = i+1; k < j; k++) {
proximity[index(k, i)] = (d(k, i) * (n[i] + n[k]) + d(j, k) * (n[j] + n[k]) - d(j, i) * n[k]) / (nij + n[k]);
}
for (int k = j+1; k < size; k++) {
proximity[index(k, i)] = (d(k, i) * (n[i] + n[k]) + d(k, j) * (n[j] + n[k]) - d(j, i) * n[k]) / (nij + n[k]);
}
n[i] += n[j];
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy