smile.math.matrix.DenseMatrix Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of openchemlib Show documentation
Show all versions of openchemlib Show documentation
Open Source Chemistry Library
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.math.matrix;
import smile.math.Math;
/**
* An abstract interface of dense matrix.
*
* @author Haifeng Li
*/
public interface DenseMatrix extends Matrix, MatrixMultiplication {
/** Returns the array of storing the matrix. */
double[] data();
/**
* The LDA (and LDB, LDC, etc.) parameter in BLAS is effectively
* the stride of the matrix as it is laid out in linear memory.
* It is perfectly valid to have an LDA value which is larger than
* the leading dimension of the matrix which is being operated on.
* Typical cases where it is either useful or necessary to use a
* larger LDA value are when you are operating on a sub matrix from
* a larger dense matrix, and when hardware or algorithms offer
* performance advantages when storage is padded to round multiples
* of some optimal size (cache lines or GPU memory transaction size,
* or load balance in multiprocessor implementations, for example).
*
* @return the leading dimension
*/
int ld();
/**
* Set the entry value at row i and column j.
*/
double set(int i, int j, double x);
/**
* Set the entry value at row i and column j. For Scala users.
*/
default double update(int i, int j, double x) {
return set(i, j, x);
}
/**
* Returns the LU decomposition.
* This input matrix will be overwritten with the decomposition.
*/
LU lu();
/**
* Returns the LU decomposition.
* @param inPlace if true, this matrix will be used for matrix decomposition.
*/
default LU lu(boolean inPlace) {
DenseMatrix a = inPlace ? this : copy();
return a.lu();
}
/**
* Returns the Cholesky decomposition.
* This input matrix will be overwritten with the decomposition.
* @throws IllegalArgumentException if the matrix is not positive definite.
*/
Cholesky cholesky();
/**
* Returns the Cholesky decomposition.
* @param inPlace if true, this matrix will be used for matrix decomposition.
* @throws IllegalArgumentException if the matrix is not positive definite.
*/
default Cholesky cholesky(boolean inPlace) {
DenseMatrix a = inPlace ? this : copy();
return a.cholesky();
}
/**
* Returns the QR decomposition.
* This input matrix will be overwritten with the decomposition.
*/
QR qr();
/**
* Returns the QR decomposition.
* @param inPlace if true, this matrix will be used for matrix decomposition.
*/
default QR qr(boolean inPlace) {
DenseMatrix a = inPlace ? this : copy();
return a.qr();
}
/**
* Returns the singular value decomposition. Note that the input matrix
* will hold U on output.
*/
SVD svd();
/**
* Returns the singular value decomposition.
* @param inPlace if true, this matrix will hold U on output.
*/
default SVD svd(boolean inPlace) {
DenseMatrix a = inPlace ? this : copy();
return a.svd();
}
/**
* Returns the eigen value decomposition. Note that the input matrix
* will be overwritten on output.
*/
EVD eigen();
/**
* Returns the eigen value decomposition.
* @param inPlace if true, this matrix will be overwritten U on output.
*/
default EVD eigen(boolean inPlace) {
DenseMatrix a = inPlace ? this : copy();
return a.eigen();
}
/**
* Returns the eigen values in an array of size 2N. The first half and second half
* of returned array contain the real and imaginary parts, respectively, of the
* computed eigenvalues.
*/
double[] eig();
/**
* Returns the eigen values in an array of size 2N. The first half and second half
* of returned array contain the real and imaginary parts, respectively, of the
* computed eigenvalues.
* @param inPlace if true, this matrix will be overwritten U on output.
*/
default double[] eig(boolean inPlace) {
DenseMatrix a = inPlace ? this : copy();
return a.eig();
}
/**
* Returns the matrix transpose.
*/
@Override
DenseMatrix transpose();
/**
* Returns the inverse matrix.
*/
default DenseMatrix inverse() {
return inverse(false);
}
/**
* Returns the inverse matrix.
* @param inPlace if true, this matrix will be used for matrix decomposition.
*/
default DenseMatrix inverse(boolean inPlace) {
if (nrows() != ncols()) {
throw new UnsupportedOperationException("Call inverse() on a non-square matrix");
}
LU lu = lu(inPlace);
return lu.inverse();
}
/**
* L1 matrix norm. Maximum column sum.
*/
default double norm1() {
int m = nrows();
int n = ncols();
double f = 0.0;
for (int j = 0; j < n; j++) {
double s = 0.0;
for (int i = 0; i < m; i++) {
s += Math.abs(get(i, j));
}
f = Math.max(f, s);
}
return f;
}
/**
* L2 matrix norm. Maximum singular value.
*/
default double norm2() {
return svd(false).norm();
}
/**
* L2 matrix norm. Maximum singular value.
*/
default double norm() {
return norm2();
}
/**
* Infinity matrix norm. Maximum row sum.
*/
default double normInf() {
int m = nrows();
int n = ncols();
double[] f = new double[m];
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
f[i] += Math.abs(get(i, j));
}
}
return Math.max(f);
}
/**
* Frobenius matrix norm. Sqrt of sum of squares of all elements.
*/
default double normFro() {
int m = nrows();
int n = ncols();
double f = 0.0;
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
f = Math.hypot(f, get(i, j));
}
}
return f;
}
/**
* Returns x' * A * x.
* The left upper submatrix of A is used in the computation based
* on the size of x.
*/
default double xax(double[] x) {
if (nrows() != ncols()) {
throw new IllegalArgumentException("The matrix is not square");
}
if (nrows() != x.length) {
throw new IllegalArgumentException("Matrix and vector size doesn't match for x' * A * x");
}
int n = x.length;
double s = 0.0;
for (int j = 0; j < n; j++) {
for (int i = 0; i < n; i++) {
s += get(i, j) * x[i] * x[j];
}
}
return s;
}
/**
* Returns the sum of each row for a matrix.
*/
default double[] rowSums() {
int m = nrows();
int n = ncols();
double[] x = new double[m];
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
x[i] += get(i, j);
}
}
return x;
}
/**
* Returns the mean of each row for a matrix.
*/
default double[] rowMeans() {
int m = nrows();
int n = ncols();
double[] x = new double[m];
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
x[i] += get(i, j);
}
}
for (int i = 0; i < m; i++) {
x[i] /= n;
}
return x;
}
/**
* Returns the sum of each column for a matrix.
*/
default double[] colSums() {
int m = nrows();
int n = ncols();
double[] x = new double[n];
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
x[j] += get(i, j);
}
}
return x;
}
/**
* Returns the mean of each column for a matrix.
*/
default double[] colMeans() {
int m = nrows();
int n = ncols();
double[] x = new double[n];
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
x[j] += get(i, j);
}
x[j] /= m;
}
return x;
}
/**
* Returns a copy of this matrix.
*/
DenseMatrix copy();
@Override
DenseMatrix ata();
@Override
DenseMatrix aat();
/**
* A[i][j] += x
*/
double add(int i, int j, double x);
/**
* A[i][j] -= x
*/
double sub(int i, int j, double x);
/**
* A[i][j] *= x
*/
double mul(int i, int j, double x);
/**
* A[i][j] /= x
*/
double div(int i, int j, double x);
/**
* C = A + B
* @return the result matrix
*/
default DenseMatrix add(DenseMatrix b, DenseMatrix c) {
if (nrows() != b.nrows() || ncols() != b.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
if (nrows() != c.nrows() || ncols() != c.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
int m = nrows();
int n = ncols();
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
c.set(i, j, get(i, j) + b.get(i, j));
}
}
return c;
}
/**
* In place addition A = A + B
* @return this matrix
*/
default DenseMatrix add(DenseMatrix b) {
if (nrows() != b.nrows() || ncols() != b.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
int m = nrows();
int n = ncols();
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
add(i, j, b.get(i, j));
}
}
return this;
}
/**
* C = A - B
* @return the result matrix
*/
default DenseMatrix sub(DenseMatrix b, DenseMatrix c) {
if (nrows() != b.nrows() || ncols() != b.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
if (nrows() != c.nrows() || ncols() != c.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
int m = nrows();
int n = ncols();
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
c.set(i, j, get(i, j) - b.get(i, j));
}
}
return c;
}
/**
* In place subtraction A = A - B
* @return this matrix
*/
default DenseMatrix sub(DenseMatrix b) {
if (nrows() != b.nrows() || ncols() != b.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
int m = nrows();
int n = ncols();
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
sub(i, j, b.get(i, j));
}
}
return this;
}
/**
* C = A * B
* @return the result matrix
*/
default DenseMatrix mul(DenseMatrix b, DenseMatrix c) {
if (nrows() != b.nrows() || ncols() != b.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
if (nrows() != c.nrows() || ncols() != c.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
int m = nrows();
int n = ncols();
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
c.set(i, j, get(i, j) * b.get(i, j));
}
}
return c;
}
/**
* In place element-wise multiplication A = A * B
* @return this matrix
*/
default DenseMatrix mul(DenseMatrix b) {
if (nrows() != b.nrows() || ncols() != b.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
int m = nrows();
int n = ncols();
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
mul(i, j, b.get(i, j));
}
}
return this;
}
/**
* C = A / B
* @return the result matrix
*/
default DenseMatrix div(DenseMatrix b, DenseMatrix c) {
if (nrows() != b.nrows() || ncols() != b.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
if (nrows() != c.nrows() || ncols() != c.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
int m = nrows();
int n = ncols();
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
c.set(i, j, get(i, j) / b.get(i, j));
}
}
return c;
}
/**
* In place element-wise division A = A / B
* A = A - B
* @return this matrix
*/
default DenseMatrix div(DenseMatrix b) {
if (nrows() != b.nrows() || ncols() != b.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
int m = nrows();
int n = ncols();
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
div(i, j, b.get(i, j));
}
}
return this;
}
/**
* Element-wise addition C = A + x
*/
default DenseMatrix add(double x, DenseMatrix c) {
if (nrows() != c.nrows() || ncols() != c.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
int m = nrows();
int n = ncols();
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
c.set(i, j, get(i, j) + x);
}
}
return c;
}
/**
* In place element-wise addition A = A + x
*/
default DenseMatrix add(double x) {
int m = nrows();
int n = ncols();
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
add(i, j, x);
}
}
return this;
}
/**
* Element-wise addition C = A - x
*/
default DenseMatrix sub(double x, DenseMatrix c) {
if (nrows() != c.nrows() || ncols() != c.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
int m = nrows();
int n = ncols();
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
c.set(i, j, get(i, j) - x);
}
}
return c;
}
/**
* In place element-wise subtraction A = A - x
*/
default DenseMatrix sub(double x) {
int m = nrows();
int n = ncols();
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
sub(i, j, x);
}
}
return this;
}
/**
* Element-wise addition C = A * x
*/
default DenseMatrix mul(double x, DenseMatrix c) {
if (nrows() != c.nrows() || ncols() != c.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
int m = nrows();
int n = ncols();
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
c.set(i, j, get(i, j) * x);
}
}
return c;
}
/**
* In place element-wise multiplication A = A * x
*/
default DenseMatrix mul(double x) {
int m = nrows();
int n = ncols();
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
mul(i, j, x);
}
}
return this;
}
/**
* Element-wise addition C = A / x
*/
default DenseMatrix div(double x, DenseMatrix c) {
if (nrows() != c.nrows() || ncols() != c.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
int m = nrows();
int n = ncols();
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
c.set(i, j, get(i, j) / x);
}
}
return c;
}
/**
* In place element-wise division A = A / x
*/
default DenseMatrix div(double x) {
int m = nrows();
int n = ncols();
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
div(i, j, x);
}
}
return this;
}
/**
* Replaces NaN's with given value.
*/
default DenseMatrix replaceNaN(double x) {
int m = nrows();
int n = ncols();
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
if (Double.isNaN(get(i, j))) {
set(i, j, x);
}
}
}
return this;
}
/**
* Returns the sum of all elements in the matrix.
* @return the sum of all elements.
*/
default double sum() {
int m = nrows();
int n = ncols();
double s = 0.0;
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
s += get(i, j);
}
}
return s;
}
/**
* Return the two-dimensional array of matrix.
* @return the two-dimensional array of matrix.
*/
default double[][] array() {
int m = nrows();
int n = ncols();
double[][] V = new double[m][n];
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
V[i][j] = get(i, j);
}
}
return V;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy