smile.math.matrix.JMatrix Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of openchemlib Show documentation
Show all versions of openchemlib Show documentation
Open Source Chemistry Library
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.math.matrix;
import smile.math.Complex;
import smile.math.Math;
import java.util.Arrays;
/**
* A pure Java implementation of DenseMatrix whose data is stored in a single 1D array of
* doubles in column major order.
*/
public class JMatrix implements DenseMatrix {
private static final long serialVersionUID = 1L;
/**
* The matrix storage.
*/
private double[] A;
/**
* The number of rows.
*/
private int nrows;
/**
* The number of columns.
*/
private int ncols;
/**
* True if the matrix is symmetric.
*/
private boolean symmetric = false;
/**
* Constructor.
* @param A the array of matrix.
*/
public JMatrix(double[][] A) {
this.nrows = A.length;
this.ncols = A[0].length;
this.A = new double[nrows*ncols];
for (int i = 0; i < nrows; i++) {
for (int j = 0; j < ncols; j++) {
set(i, j, A[i][j]);
}
}
}
/**
* Constructor of a column vector/matrix with given array as the internal storage.
* @param A the array of column vector.
*/
public JMatrix(double[] A) {
this.nrows = A.length;
this.ncols = 1;
this.A = A;
}
/**
* Constructor of all-zero matrix.
*/
public JMatrix(int rows, int cols) {
this.nrows = rows;
this.ncols = cols;
A = new double[rows*cols];
}
/**
* Constructor. Fill the matrix with given value.
*/
public JMatrix(int rows, int cols, double value) {
this(rows, cols);
Arrays.fill(A, value);
}
/**
* Constructor.
* @param value the array of matrix values arranged in column major format
*/
public JMatrix(int rows, int cols, double[] value) {
this.nrows = rows;
this.ncols = cols;
this.A = value;
}
@Override
public boolean isSymmetric() {
return symmetric;
}
@Override
public void setSymmetric(boolean symmetric) {
this.symmetric = symmetric;
}
@Override
public JMatrix copy() {
JMatrix a = new JMatrix(nrows, ncols, A.clone());
a.setSymmetric(isSymmetric());
return a;
}
@Override
public double[] data() {
return A;
}
@Override
public JMatrix transpose() {
JMatrix B = new JMatrix(ncols(), nrows());
for (int i = 0; i < nrows(); i++) {
for (int j = 0; j < ncols(); j++) {
B.set(j, i, get(i, j));
}
}
return B;
}
@Override
public String toString() {
return toString(false);
}
@Override
public int nrows() {
return nrows;
}
@Override
public int ncols() {
return ncols;
}
@Override
public int ld() {
return nrows;
}
@Override
public double get(int i, int j) {
return A[j*nrows + i];
}
@Override
public double set(int i, int j, double x) {
return A[j*nrows + i] = x;
}
@Override
public double add(int i, int j, double x) {
return A[j*nrows + i] += x;
}
@Override
public double sub(int i, int j, double x) {
return A[j*nrows + i] -= x;
}
@Override
public double mul(int i, int j, double x) {
return A[j*nrows + i] *= x;
}
@Override
public double div(int i, int j, double x) {
return A[j*nrows + i] /= x;
}
@Override
public JMatrix add(DenseMatrix b) {
if (b instanceof JMatrix) {
return add((JMatrix) b);
} else {
if (nrows() != b.nrows() || ncols() != b.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
int m = nrows();
int n = ncols();
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
add(i, j, b.get(i, j));
}
}
return this;
}
}
public JMatrix add(JMatrix b) {
if (nrows() != b.nrows() || ncols() != b.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
for (int i = 0; i < A.length; i++) {
A[i] += b.A[i];
}
return this;
}
@Override
public DenseMatrix add(DenseMatrix b, DenseMatrix c) {
if (b instanceof JMatrix && c instanceof JMatrix) {
return add((JMatrix) b, (JMatrix) c);
}
if (nrows() != b.nrows() || ncols() != b.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
if (nrows() != c.nrows() || ncols() != c.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
int m = nrows();
int n = ncols();
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
c.set(i, j, get(i, j) + b.get(i, j));
}
}
return c;
}
public JMatrix add(JMatrix b, JMatrix c) {
if (nrows() != b.nrows() || ncols() != b.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
if (nrows() != c.nrows() || ncols() != c.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
for (int i = 0; i < A.length; i++) {
c.A[i] = A[i] + b.A[i];
}
return c;
}
@Override
public JMatrix sub(DenseMatrix b) {
if (b instanceof JMatrix) {
return sub((JMatrix) b);
}
if (nrows() != b.nrows() || ncols() != b.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
int m = nrows();
int n = ncols();
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
sub(i, j, b.get(i, j));
}
}
return this;
}
public JMatrix sub(JMatrix b) {
if (nrows() != b.nrows() || ncols() != b.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
for (int i = 0; i < A.length; i++) {
A[i] -= b.A[i];
}
return this;
}
@Override
public DenseMatrix sub(DenseMatrix b, DenseMatrix c) {
if (b instanceof JMatrix && c instanceof JMatrix) {
return sub((JMatrix) b, (JMatrix) c);
}
if (nrows() != b.nrows() || ncols() != b.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
if (nrows() != c.nrows() || ncols() != c.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
int m = nrows();
int n = ncols();
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
c.set(i, j, get(i, j) - b.get(i, j));
}
}
return c;
}
public JMatrix sub(JMatrix b, JMatrix c) {
if (nrows() != b.nrows() || ncols() != b.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
if (nrows() != c.nrows() || ncols() != c.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
for (int i = 0; i < A.length; i++) {
c.A[i] = A[i] - b.A[i];
}
return c;
}
@Override
public JMatrix mul(DenseMatrix b) {
if (b instanceof JMatrix) {
return mul((JMatrix) b);
}
if (nrows() != b.nrows() || ncols() != b.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
int m = nrows();
int n = ncols();
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
mul(i, j, b.get(i, j));
}
}
return this;
}
public JMatrix mul(JMatrix b) {
if (nrows() != b.nrows() || ncols() != b.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
for (int i = 0; i < A.length; i++) {
A[i] *= b.A[i];
}
return this;
}
@Override
public DenseMatrix mul(DenseMatrix b, DenseMatrix c) {
if (b instanceof JMatrix && c instanceof JMatrix) {
return mul((JMatrix) b, (JMatrix) c);
}
if (nrows() != b.nrows() || ncols() != b.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
if (nrows() != c.nrows() || ncols() != c.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
int m = nrows();
int n = ncols();
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
c.set(i, j, get(i, j) * b.get(i, j));
}
}
return c;
}
public JMatrix mul(JMatrix b, JMatrix c) {
if (nrows() != b.nrows() || ncols() != b.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
if (nrows() != c.nrows() || ncols() != c.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
for (int i = 0; i < A.length; i++) {
c.A[i] = A[i] * b.A[i];
}
return c;
}
@Override
public JMatrix div(DenseMatrix b) {
if (b instanceof JMatrix) {
return div((JMatrix) b);
}
if (nrows() != b.nrows() || ncols() != b.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
int m = nrows();
int n = ncols();
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
div(i, j, b.get(i, j));
}
}
return this;
}
public JMatrix div(JMatrix b) {
if (nrows() != b.nrows() || ncols() != b.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
for (int i = 0; i < A.length; i++) {
A[i] /= b.A[i];
}
return this;
}
@Override
public DenseMatrix div(DenseMatrix b, DenseMatrix c) {
if (b instanceof JMatrix && c instanceof JMatrix) {
return div((JMatrix) b, (JMatrix) c);
}
if (nrows() != b.nrows() || ncols() != b.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
if (nrows() != c.nrows() || ncols() != c.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
int m = nrows();
int n = ncols();
for (int j = 0; j < n; j++) {
for (int i = 0; i < m; i++) {
c.set(i, j, get(i, j) / b.get(i, j));
}
}
return c;
}
public JMatrix div(JMatrix b, JMatrix c) {
if (nrows() != b.nrows() || ncols() != b.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
if (nrows() != c.nrows() || ncols() != c.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
for (int i = 0; i < A.length; i++) {
c.A[i] = A[i] / b.A[i];
}
return c;
}
@Override
public JMatrix add(double x) {
for (int i = 0; i < A.length; i++) {
A[i] += x;
}
return this;
}
@Override
public DenseMatrix add(double x, DenseMatrix c) {
if (c instanceof JMatrix) {
return add(x, (JMatrix)c);
}
if (nrows() != c.nrows() || ncols() != c.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
for (int j = 0; j < ncols; j++) {
for (int i = 0; i < nrows; i++) {
c.set(i, j, get(i, j) + x);
}
}
return c;
}
public JMatrix add(double x, JMatrix c) {
if (nrows() != c.nrows() || ncols() != c.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
for (int i = 0; i < A.length; i++) {
c.A[i] = A[i] + x;
}
return c;
}
@Override
public JMatrix sub(double x) {
for (int i = 0; i < A.length; i++) {
A[i] -= x;
}
return this;
}
@Override
public DenseMatrix sub(double x, DenseMatrix c) {
if (c instanceof JMatrix) {
return sub(x, (JMatrix) c);
}
if (nrows() != c.nrows() || ncols() != c.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
for (int j = 0; j < ncols; j++) {
for (int i = 0; i < nrows; i++) {
c.set(i, j, get(i, j) - x);
}
}
return c;
}
public JMatrix sub(double x, JMatrix c) {
if (nrows() != c.nrows() || ncols() != c.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
for (int i = 0; i < A.length; i++) {
c.A[i] = A[i] - x;
}
return c;
}
@Override
public JMatrix mul(double x) {
for (int i = 0; i < A.length; i++) {
A[i] *= x;
}
return this;
}
@Override
public DenseMatrix mul(double x, DenseMatrix c) {
if (c instanceof JMatrix) {
return mul(x, (JMatrix)c);
}
if (nrows() != c.nrows() || ncols() != c.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
for (int j = 0; j < ncols; j++) {
for (int i = 0; i < nrows; i++) {
c.set(i, j, get(i, j) * x);
}
}
return c;
}
public JMatrix mul(double x, JMatrix c) {
if (nrows() != c.nrows() || ncols() != c.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
for (int i = 0; i < A.length; i++) {
c.A[i] = A[i] * x;
}
return c;
}
@Override
public JMatrix div(double x) {
for (int i = 0; i < A.length; i++) {
A[i] /= x;
}
return this;
}
@Override
public DenseMatrix div(double x, DenseMatrix c) {
if (c instanceof JMatrix) {
return div(x, (JMatrix) c);
}
if (nrows() != c.nrows() || ncols() != c.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
for (int j = 0; j < ncols; j++) {
for (int i = 0; i < nrows; i++) {
c.set(i, j, get(i, j) / x);
}
}
return c;
}
public JMatrix div(double x, JMatrix c) {
if (nrows() != c.nrows() || ncols() != c.ncols()) {
throw new IllegalArgumentException("Matrix is not of same size.");
}
for (int i = 0; i < A.length; i++) {
c.A[i] = A[i] / x;
}
return c;
}
@Override
public JMatrix replaceNaN(double x) {
for (int i = 0; i < A.length; i++) {
if (Double.isNaN(A[i])) {
A[i] = x;
}
}
return this;
}
@Override
public double sum() {
double s = 0.0;
for (int i = 0; i < A.length; i++) {
s += A[i];
}
return s;
}
@Override
public JMatrix ata() {
JMatrix C = new JMatrix(ncols, ncols);
for (int i = 0; i < ncols; i++) {
for (int j = 0; j < ncols; j++) {
double v = 0.0;
for (int k = 0; k < nrows; k++) {
v += get(k, i) * get(k, j);
}
C.set(i, j, v);
}
}
return C;
}
@Override
public JMatrix aat() {
JMatrix C = new JMatrix(nrows, nrows);
for (int k = 0; k < ncols; k++) {
for (int i = 0; i < nrows; i++) {
for (int j = 0; j < nrows; j++) {
C.add(i, j, get(i, k) * get(j, k));
}
}
}
return C;
}
@Override
public double[] ax(double[] x, double[] y) {
int n = Math.min(nrows, y.length);
int p = Math.min(ncols, x.length);
Arrays.fill(y, 0.0);
for (int k = 0; k < p; k++) {
for (int i = 0; i < n; i++) {
y[i] += get(i, k) * x[k];
}
}
return y;
}
@Override
public double[] axpy(double[] x, double[] y) {
int n = Math.min(nrows, y.length);
int p = Math.min(ncols, x.length);
for (int k = 0; k < p; k++) {
for (int i = 0; i < n; i++) {
y[i] += get(i, k) * x[k];
}
}
return y;
}
@Override
public double[] axpy(double[] x, double[] y, double b) {
int n = Math.min(nrows, y.length);
int p = Math.min(ncols, x.length);
for (int i = 0; i < n; i++) {
y[i] *= b;
}
for (int k = 0; k < p; k++) {
for (int i = 0; i < n; i++) {
y[i] += get(i, k) * x[k];
}
}
return y;
}
@Override
public double[] atx(double[] x, double[] y) {
int n = Math.min(ncols, y.length);
int p = Math.min(nrows, x.length);
Arrays.fill(y, 0.0);
for (int i = 0; i < n; i++) {
for (int k = 0; k < p; k++) {
y[i] += get(k, i) * x[k];
}
}
return y;
}
@Override
public double[] atxpy(double[] x, double[] y) {
int n = Math.min(ncols, y.length);
int p = Math.min(nrows, x.length);
for (int i = 0; i < n; i++) {
for (int k = 0; k < p; k++) {
y[i] += get(k, i) * x[k];
}
}
return y;
}
@Override
public double[] atxpy(double[] x, double[] y, double b) {
int n = Math.min(ncols, y.length);
int p = Math.min(nrows, x.length);
for (int i = 0; i < n; i++) {
y[i] *= b;
for (int k = 0; k < p; k++) {
y[i] += get(k, i) * x[k];
}
}
return y;
}
@Override
public JMatrix abmm(DenseMatrix B) {
if (ncols() != B.nrows()) {
throw new IllegalArgumentException(String.format("Matrix multiplication A * B: %d x %d vs %d x %d", nrows(), ncols(), B.nrows(), B.ncols()));
}
JMatrix C = new JMatrix(nrows, B.ncols());
for (int i = 0; i < nrows; i++) {
for (int j = 0; j < B.ncols(); j++) {
double v = 0.0;
for (int k = 0; k < ncols; k++) {
v += get(i, k) * B.get(k, j);
}
C.set(i, j, v);
}
}
return C;
}
@Override
public JMatrix abtmm(DenseMatrix B) {
if (ncols() != B.ncols()) {
throw new IllegalArgumentException(String.format("Matrix multiplication A * B': %d x %d vs %d x %d", nrows(), ncols(), B.nrows(), B.ncols()));
}
JMatrix C = new JMatrix(nrows, B.nrows());
for (int k = 0; k < ncols; k++) {
for (int i = 0; i < nrows; i++) {
for (int j = 0; j < B.nrows(); j++) {
C.add(i, j, get(i, k) * B.get(j, k));
}
}
}
return C;
}
@Override
public JMatrix atbmm(DenseMatrix B) {
if (nrows() != B.nrows()) {
throw new IllegalArgumentException(String.format("Matrix multiplication A' * B: %d x %d vs %d x %d", nrows(), ncols(), B.nrows(), B.ncols()));
}
JMatrix C = new JMatrix(ncols, B.ncols());
for (int i = 0; i < ncols; i++) {
for (int j = 0; j < B.ncols(); j++) {
double v = 0.0;
for (int k = 0; k < nrows; k++) {
v += get(k, i) * B.get(k, j);
}
C.set(i, j, v);
}
}
return C;
}
/**
* LU decomposition is computed by a "left-looking", dot-product, Crout/Doolittle algorithm.
*/
@Override
public LU lu() {
int m = nrows();
int n = ncols();
int[] piv = new int[m];
for (int i = 0; i < m; i++) {
piv[i] = i;
}
int pivsign = 1;
double[] LUcolj = new double[m];
for (int j = 0; j < n; j++) {
// Make a copy of the j-th column to localize references.
for (int i = 0; i < m; i++) {
LUcolj[i] = get(i, j);
}
// Apply previous transformations.
for (int i = 0; i < m; i++) {
// Most of the time is spent in the following dot product.
int kmax = Math.min(i, j);
double s = 0.0;
for (int k = 0; k < kmax; k++) {
s += get(i, k) * LUcolj[k];
}
LUcolj[i] -= s;
set(i, j, LUcolj[i]);
}
// Find pivot and exchange if necessary.
int p = j;
for (int i = j + 1; i < m; i++) {
if (Math.abs(LUcolj[i]) > Math.abs(LUcolj[p])) {
p = i;
}
}
if (p != j) {
for (int k = 0; k < n; k++) {
double t = get(p, k);
set(p, k, get(j, k));
set(j, k, t);
}
int k = piv[p];
piv[p] = piv[j];
piv[j] = k;
pivsign = -pivsign;
}
// Compute multipliers.
if (j < m & get(j, j) != 0.0) {
for (int i = j + 1; i < m; i++) {
div(i, j, get(j, j));
}
}
}
boolean singular = false;
for (int j = 0; j < n; j++) {
if (get(j, j) == 0) {
singular = true;
break;
}
}
return new LU(this, piv, pivsign, singular);
}
/**
* Cholesky decomposition for symmetric and positive definite matrix.
* Only the lower triangular part will be used in the decomposition.
*
* @throws IllegalArgumentException if the matrix is not positive definite.
*/
@Override
public Cholesky cholesky() {
if (nrows() != ncols()) {
throw new UnsupportedOperationException("Cholesky decomposition on non-square matrix");
}
int n = nrows();
// Main loop.
for (int j = 0; j < n; j++) {
double d = 0.0;
for (int k = 0; k < j; k++) {
double s = 0.0;
for (int i = 0; i < k; i++) {
s += get(k, i) * get(j, i);
}
s = (get(j, k) - s) / get(k, k);
set(j, k, s);
d = d + s * s;
}
d = get(j, j) - d;
if (d < 0.0) {
throw new IllegalArgumentException("The matrix is not positive definite.");
}
set(j, j, Math.sqrt(d));
}
return new Cholesky(this);
}
/**
* QR Decomposition is computed by Householder reflections.
*/
@Override
public QR qr() {
// Initialize.
int m = nrows();
int n = ncols();
double[] rDiagonal = new double[n];
// Main loop.
for (int k = 0; k < n; k++) {
// Compute 2-norm of k-th column without under/overflow.
double nrm = 0.0;
for (int i = k; i < m; i++) {
nrm = Math.hypot(nrm, get(i, k));
}
if (nrm != 0.0) {
// Form k-th Householder vector.
if (get(k, k) < 0) {
nrm = -nrm;
}
for (int i = k; i < m; i++) {
div(i, k, nrm);
}
add(k, k, 1.0);
// Apply transformation to remaining columns.
for (int j = k + 1; j < n; j++) {
double s = 0.0;
for (int i = k; i < m; i++) {
s += get(i, k) * get(i, j);
}
s = -s / get(k, k);
for (int i = k; i < m; i++) {
add(i, j, s * get(i, k));
}
}
}
rDiagonal[k] = -nrm;
}
boolean singular = false;
for (int j = 0; j < rDiagonal.length; j++) {
if (rDiagonal[j] == 0) {
singular = true;
break;
}
}
return new QR(this, rDiagonal, singular);
}
@Override
public SVD svd() {
int m = nrows();
int n = ncols();
boolean flag;
int i, its, j, jj, k, l = 0, nm = 0;
double anorm, c, f, g, h, s, scale, x, y, z;
g = scale = anorm = 0.0;
DenseMatrix U = this;
DenseMatrix V = Matrix.zeros(n, n);
double[] w = new double[n];
double[] rv1 = new double[n];
for (i = 0; i < n; i++) {
l = i + 2;
rv1[i] = scale * g;
g = s = scale = 0.0;
if (i < m) {
for (k = i; k < m; k++) {
scale += Math.abs(U.get(k, i));
}
if (scale != 0.0) {
for (k = i; k < m; k++) {
U.div(k, i, scale);
s += U.get(k, i) * U.get(k, i);
}
f = U.get(i, i);
g = -Math.copySign(Math.sqrt(s), f);
h = f * g - s;
U.set(i, i, f - g);
for (j = l - 1; j < n; j++) {
for (s = 0.0, k = i; k < m; k++) {
s += U.get(k, i) * U.get(k, j);
}
f = s / h;
for (k = i; k < m; k++) {
U.add(k, j, f * U.get(k, i));
}
}
for (k = i; k < m; k++) {
U.mul(k, i, scale);
}
}
}
w[i] = scale * g;
g = s = scale = 0.0;
if (i + 1 <= m && i + 1 != n) {
for (k = l - 1; k < n; k++) {
scale += Math.abs(U.get(i, k));
}
if (scale != 0.0) {
for (k = l - 1; k < n; k++) {
U.div(i, k, scale);
s += U.get(i, k) * U.get(i, k);
}
f = U.get(i, l - 1);
g = -Math.copySign(Math.sqrt(s), f);
h = f * g - s;
U.set(i, l - 1, f - g);
for (k = l - 1; k < n; k++) {
rv1[k] = U.get(i, k) / h;
}
for (j = l - 1; j < m; j++) {
for (s = 0.0, k = l - 1; k < n; k++) {
s += U.get(j, k) * U.get(i, k);
}
for (k = l - 1; k < n; k++) {
U.add(j, k, s * rv1[k]);
}
}
for (k = l - 1; k < n; k++) {
U.mul(i, k, scale);
}
}
}
anorm = Math.max(anorm, (Math.abs(w[i]) + Math.abs(rv1[i])));
}
for (i = n - 1; i >= 0; i--) {
if (i < n - 1) {
if (g != 0.0) {
for (j = l; j < n; j++) {
V.set(j, i, (U.get(i, j) / U.get(i, l)) / g);
}
for (j = l; j < n; j++) {
for (s = 0.0, k = l; k < n; k++) {
s += U.get(i, k) * V.get(k, j);
}
for (k = l; k < n; k++) {
V.add(k, j, s * V.get(k, i));
}
}
}
for (j = l; j < n; j++) {
V.set(i, j, 0.0);
V.set(j, i, 0.0);
}
}
V.set(i, i, 1.0);
g = rv1[i];
l = i;
}
for (i = Math.min(m, n) - 1; i >= 0; i--) {
l = i + 1;
g = w[i];
for (j = l; j < n; j++) {
U.set(i, j, 0.0);
}
if (g != 0.0) {
g = 1.0 / g;
for (j = l; j < n; j++) {
for (s = 0.0, k = l; k < m; k++) {
s += U.get(k, i) * U.get(k, j);
}
f = (s / U.get(i, i)) * g;
for (k = i; k < m; k++) {
U.add(k, j, f * U.get(k, i));
}
}
for (j = i; j < m; j++) {
U.mul(j, i, g);
}
} else {
for (j = i; j < m; j++) {
U.set(j, i, 0.0);
}
}
U.add(i, i, 1.0);
}
for (k = n - 1; k >= 0; k--) {
for (its = 0; its < 30; its++) {
flag = true;
for (l = k; l >= 0; l--) {
nm = l - 1;
if (l == 0 || Math.abs(rv1[l]) <= Math.EPSILON * anorm) {
flag = false;
break;
}
if (Math.abs(w[nm]) <= Math.EPSILON * anorm) {
break;
}
}
if (flag) {
c = 0.0;
s = 1.0;
for (i = l; i < k + 1; i++) {
f = s * rv1[i];
rv1[i] = c * rv1[i];
if (Math.abs(f) <= Math.EPSILON * anorm) {
break;
}
g = w[i];
h = Math.hypot(f, g);
w[i] = h;
h = 1.0 / h;
c = g * h;
s = -f * h;
for (j = 0; j < m; j++) {
y = U.get(j, nm);
z = U.get(j, i);
U.set(j, nm, y * c + z * s);
U.set(j, i, z * c - y * s);
}
}
}
z = w[k];
if (l == k) {
if (z < 0.0) {
w[k] = -z;
for (j = 0; j < n; j++) {
V.set(j, k, -V.get(j, k));
}
}
break;
}
if (its == 29) {
throw new IllegalStateException("no convergence in 30 iterations");
}
x = w[l];
nm = k - 1;
y = w[nm];
g = rv1[nm];
h = rv1[k];
f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2.0 * h * y);
g = Math.hypot(f, 1.0);
f = ((x - z) * (x + z) + h * ((y / (f + Math.copySign(g, f))) - h)) / x;
c = s = 1.0;
for (j = l; j <= nm; j++) {
i = j + 1;
g = rv1[i];
y = w[i];
h = s * g;
g = c * g;
z = Math.hypot(f, h);
rv1[j] = z;
c = f / z;
s = h / z;
f = x * c + g * s;
g = g * c - x * s;
h = y * s;
y *= c;
for (jj = 0; jj < n; jj++) {
x = V.get(jj, j);
z = V.get(jj, i);
V.set(jj, j, x * c + z * s);
V.set(jj, i, z * c - x * s);
}
z = Math.hypot(f, h);
w[j] = z;
if (z != 0.0) {
z = 1.0 / z;
c = f * z;
s = h * z;
}
f = c * g + s * y;
x = c * y - s * g;
for (jj = 0; jj < m; jj++) {
y = U.get(jj, j);
z = U.get(jj, i);
U.set(jj, j, y * c + z * s);
U.set(jj, i, z * c - y * s);
}
}
rv1[l] = 0.0;
rv1[k] = f;
w[k] = x;
}
}
// order singular values
int inc = 1;
double sw;
double[] su = new double[m], sv = new double[n];
do {
inc *= 3;
inc++;
} while (inc <= n);
do {
inc /= 3;
for (i = inc; i < n; i++) {
sw = w[i];
for (k = 0; k < m; k++) {
su[k] = U.get(k, i);
}
for (k = 0; k < n; k++) {
sv[k] = V.get(k, i);
}
j = i;
while (w[j - inc] < sw) {
w[j] = w[j - inc];
for (k = 0; k < m; k++) {
U.set(k, j, U.get(k, j - inc));
}
for (k = 0; k < n; k++) {
V.set(k, j, V.get(k, j - inc));
}
j -= inc;
if (j < inc) {
break;
}
}
w[j] = sw;
for (k = 0; k < m; k++) {
U.set(k, j, su[k]);
}
for (k = 0; k < n; k++) {
V.set(k, j, sv[k]);
}
}
} while (inc > 1);
for (k = 0; k < n; k++) {
s = 0;
for (i = 0; i < m; i++) {
if (U.get(i, k) < 0.) {
s++;
}
}
for (j = 0; j < n; j++) {
if (V.get(j, k) < 0.) {
s++;
}
}
if (s > (m + n) / 2) {
for (i = 0; i < m; i++) {
U.set(i, k, -U.get(i, k));
}
for (j = 0; j < n; j++) {
V.set(j, k, -V.get(j, k));
}
}
}
// There are at most Math.min(m, n) nonzero singular values.
double[] sigma = new double[Math.min(m, n)];
System.arraycopy(w, 0, sigma, 0, sigma.length);
return new SVD(U, V, sigma);
}
@Override
public double[] eig() {
if (nrows() != ncols()) {
throw new IllegalArgumentException(String.format("Matrix is not square: %d x %d", nrows(), ncols()));
}
int n = nrows();
double[] d = new double[n];
double[] e = new double[n];
if (isSymmetric()) {
// Tridiagonalize.
tred(this, d, e);
// Diagonalize.
tql(d, e, n);
} else {
double[] scale = balance(this);
int[] perm = elmhes(this);
hqr(this, d, e);
sort(d, e);
}
double[] w = new double[2*n];
System.arraycopy(d, 0, w, 0, n);
System.arraycopy(e, 0, w, n, n);
return w;
}
@Override
public EVD eigen() {
if (nrows() != ncols()) {
throw new IllegalArgumentException(String.format("Matrix is not square: %d x %d", nrows(), ncols()));
}
int n = nrows();
double[] d = new double[n];
double[] e = new double[n];
DenseMatrix V;
if (isSymmetric()) {
V = this;
// Tridiagonalize.
tred2(V, d, e);
// Diagonalize.
tql2(V, d, e);
} else {
double[] scale = balance(this);
int[] perm = elmhes(this);
V = Matrix.eye(n, n);
eltran(this, V, perm);
hqr2(this, V, d, e);
balbak(V, scale);
sort(d, e, V);
}
return new EVD(V, d, e);
}
/**
* Symmetric Householder reduction to tridiagonal form.
*/
private static void tred(DenseMatrix V, double[] d, double[] e) {
int n = V.nrows();
for (int i = 0; i < n; i++) {
d[i] = V.get(n - 1, i);
}
// Householder reduction to tridiagonal form.
for (int i = n - 1; i > 0; i--) {
// Scale to avoid under/overflow.
double scale = 0.0;
double h = 0.0;
for (int k = 0; k < i; k++) {
scale = scale + Math.abs(d[k]);
}
if (scale == 0.0) {
e[i] = d[i - 1];
for (int j = 0; j < i; j++) {
d[j] = V.get(i - 1, j);
V.set(i, j, 0.0);
V.set(j, i, 0.0);
}
} else {
// Generate Householder vector.
for (int k = 0; k < i; k++) {
d[k] /= scale;
h += d[k] * d[k];
}
double f = d[i - 1];
double g = Math.sqrt(h);
if (f > 0) {
g = -g;
}
e[i] = scale * g;
h = h - f * g;
d[i - 1] = f - g;
for (int j = 0; j < i; j++) {
e[j] = 0.0;
}
// Apply similarity transformation to remaining columns.
for (int j = 0; j < i; j++) {
f = d[j];
V.set(j, i, f);
g = e[j] + V.get(j, j) * f;
for (int k = j + 1; k <= i - 1; k++) {
g += V.get(k, j) * d[k];
e[k] += V.get(k, j) * f;
}
e[j] = g;
}
f = 0.0;
for (int j = 0; j < i; j++) {
e[j] /= h;
f += e[j] * d[j];
}
double hh = f / (h + h);
for (int j = 0; j < i; j++) {
e[j] -= hh * d[j];
}
for (int j = 0; j < i; j++) {
f = d[j];
g = e[j];
for (int k = j; k <= i - 1; k++) {
V.sub(k, j, (f * e[k] + g * d[k]));
}
d[j] = V.get(i - 1, j);
V.set(i, j, 0.0);
}
}
d[i] = h;
}
for (int j = 0; j < n; j++) {
d[j] = V.get(j, j);
}
e[0] = 0.0;
}
/**
* Symmetric Householder reduction to tridiagonal form.
*/
private static void tred2(DenseMatrix V, double[] d, double[] e) {
int n = V.nrows();
for (int i = 0; i < n; i++) {
d[i] = V.get(n - 1, i);
}
// Householder reduction to tridiagonal form.
for (int i = n - 1; i > 0; i--) {
// Scale to avoid under/overflow.
double scale = 0.0;
double h = 0.0;
for (int k = 0; k < i; k++) {
scale = scale + Math.abs(d[k]);
}
if (scale == 0.0) {
e[i] = d[i - 1];
for (int j = 0; j < i; j++) {
d[j] = V.get(i - 1, j);
V.set(i, j, 0.0);
V.set(j, i, 0.0);
}
} else {
// Generate Householder vector.
for (int k = 0; k < i; k++) {
d[k] /= scale;
h += d[k] * d[k];
}
double f = d[i - 1];
double g = Math.sqrt(h);
if (f > 0) {
g = -g;
}
e[i] = scale * g;
h = h - f * g;
d[i - 1] = f - g;
for (int j = 0; j < i; j++) {
e[j] = 0.0;
}
// Apply similarity transformation to remaining columns.
for (int j = 0; j < i; j++) {
f = d[j];
V.set(j, i, f);
g = e[j] + V.get(j, j) * f;
for (int k = j + 1; k <= i - 1; k++) {
g += V.get(k, j) * d[k];
e[k] += V.get(k, j) * f;
}
e[j] = g;
}
f = 0.0;
for (int j = 0; j < i; j++) {
e[j] /= h;
f += e[j] * d[j];
}
double hh = f / (h + h);
for (int j = 0; j < i; j++) {
e[j] -= hh * d[j];
}
for (int j = 0; j < i; j++) {
f = d[j];
g = e[j];
for (int k = j; k <= i - 1; k++) {
V.sub(k, j, (f * e[k] + g * d[k]));
}
d[j] = V.get(i - 1, j);
V.set(i, j, 0.0);
}
}
d[i] = h;
}
// Accumulate transformations.
for (int i = 0; i < n - 1; i++) {
V.set(n - 1, i, V.get(i, i));
V.set(i, i, 1.0);
double h = d[i + 1];
if (h != 0.0) {
for (int k = 0; k <= i; k++) {
d[k] = V.get(k, i + 1) / h;
}
for (int j = 0; j <= i; j++) {
double g = 0.0;
for (int k = 0; k <= i; k++) {
g += V.get(k, i + 1) * V.get(k, j);
}
for (int k = 0; k <= i; k++) {
V.sub(k, j, g * d[k]);
}
}
}
for (int k = 0; k <= i; k++) {
V.set(k, i + 1, 0.0);
}
}
for (int j = 0; j < n; j++) {
d[j] = V.get(n - 1, j);
V.set(n - 1, j, 0.0);
}
V.set(n - 1, n - 1, 1.0);
e[0] = 0.0;
}
/**
* Tridiagonal QL Implicit routine for computing eigenvalues of a symmetric,
* real, tridiagonal matrix.
*
* The routine works extremely well in practice. The number of iterations for the first few
* eigenvalues might be 4 or 5, say, but meanwhile the off-diagonal elements in the lower right-hand
* corner have been reduced too. The later eigenvalues are liberated with very little work. The
* average number of iterations per eigenvalue is typically 1.3 - 1.6. The operation count per
* iteration is O(n), with a fairly large effective coefficient, say, ~20n. The total operation count
* for the diagonalization is then ~20n * (1.3 - 1.6)n = ~30n^2. If the eigenvectors are required,
* there is an additional, much larger, workload of about 3n^3 operations.
*
* @param d on input, it contains the diagonal elements of the tridiagonal matrix.
* On output, it contains the eigenvalues.
* @param e on input, it contains the subdiagonal elements of the tridiagonal
* matrix, with e[0] arbitrary. On output, its contents are destroyed.
* @param n the size of all parameter arrays.
*/
private static void tql(double[] d, double[] e, int n) {
for (int i = 1; i < n; i++) {
e[i - 1] = e[i];
}
e[n - 1] = 0.0;
double f = 0.0;
double tst1 = 0.0;
for (int l = 0; l < n; l++) {
// Find small subdiagonal element
tst1 = Math.max(tst1, Math.abs(d[l]) + Math.abs(e[l]));
int m = l;
for (; m < n; m++) {
if (Math.abs(e[m]) <= Math.EPSILON * tst1) {
break;
}
}
// If m == l, d[l] is an eigenvalue,
// otherwise, iterate.
if (m > l) {
int iter = 0;
do {
if (++iter >= 30) {
throw new RuntimeException("Too many iterations");
}
// Compute implicit shift
double g = d[l];
double p = (d[l + 1] - d[l]) / (2.0 * e[l]);
double r = Math.hypot(p, 1.0);
if (p < 0) {
r = -r;
}
d[l] = e[l] / (p + r);
d[l + 1] = e[l] * (p + r);
double dl1 = d[l + 1];
double h = g - d[l];
for (int i = l + 2; i < n; i++) {
d[i] -= h;
}
f = f + h;
// Implicit QL transformation.
p = d[m];
double c = 1.0;
double c2 = c;
double c3 = c;
double el1 = e[l + 1];
double s = 0.0;
double s2 = 0.0;
for (int i = m - 1; i >= l; i--) {
c3 = c2;
c2 = c;
s2 = s;
g = c * e[i];
h = c * p;
r = Math.hypot(p, e[i]);
e[i + 1] = s * r;
s = e[i] / r;
c = p / r;
p = c * d[i] - s * g;
d[i + 1] = h + s * (c * g + s * d[i]);
}
p = -s * s2 * c3 * el1 * e[l] / dl1;
e[l] = s * p;
d[l] = c * p;
// Check for convergence.
} while (Math.abs(e[l]) > Math.EPSILON * tst1);
}
d[l] = d[l] + f;
e[l] = 0.0;
}
// Sort eigenvalues and corresponding vectors.
for (int i = 0; i < n - 1; i++) {
int k = i;
double p = d[i];
for (int j = i + 1; j < n; j++) {
if (d[j] > p) {
k = j;
p = d[j];
}
}
if (k != i) {
d[k] = d[i];
d[i] = p;
}
}
}
/**
* Tridiagonal QL Implicit routine for computing eigenvalues and eigenvectors of a symmetric,
* real, tridiagonal matrix.
*
* The routine works extremely well in practice. The number of iterations for the first few
* eigenvalues might be 4 or 5, say, but meanwhile the off-diagonal elements in the lower right-hand
* corner have been reduced too. The later eigenvalues are liberated with very little work. The
* average number of iterations per eigenvalue is typically 1.3 - 1.6. The operation count per
* iteration is O(n), with a fairly large effective coefficient, say, ~20n. The total operation count
* for the diagonalization is then ~20n * (1.3 - 1.6)n = ~30n^2. If the eigenvectors are required,
* there is an additional, much larger, workload of about 3n^3 operations.
*
* @param V on input, it contains the identity matrix. On output, the kth column
* of V returns the normalized eigenvector corresponding to d[k].
* @param d on input, it contains the diagonal elements of the tridiagonal matrix.
* On output, it contains the eigenvalues.
* @param e on input, it contains the subdiagonal elements of the tridiagonal
* matrix, with e[0] arbitrary. On output, its contents are destroyed.
*/
static void tql2(DenseMatrix V, double[] d, double[] e) {
int n = V.nrows();
for (int i = 1; i < n; i++) {
e[i - 1] = e[i];
}
e[n - 1] = 0.0;
double f = 0.0;
double tst1 = 0.0;
for (int l = 0; l < n; l++) {
// Find small subdiagonal element
tst1 = Math.max(tst1, Math.abs(d[l]) + Math.abs(e[l]));
int m = l;
for (; m < n; m++) {
if (Math.abs(e[m]) <= Math.EPSILON * tst1) {
break;
}
}
// If m == l, d[l] is an eigenvalue,
// otherwise, iterate.
if (m > l) {
int iter = 0;
do {
if (++iter >= 30) {
throw new RuntimeException("Too many iterations");
}
// Compute implicit shift
double g = d[l];
double p = (d[l + 1] - g) / (2.0 * e[l]);
double r = Math.hypot(p, 1.0);
if (p < 0) {
r = -r;
}
d[l] = e[l] / (p + r);
d[l + 1] = e[l] * (p + r);
double dl1 = d[l + 1];
double h = g - d[l];
for (int i = l + 2; i < n; i++) {
d[i] -= h;
}
f = f + h;
// Implicit QL transformation.
p = d[m];
double c = 1.0;
double c2 = c;
double c3 = c;
double el1 = e[l + 1];
double s = 0.0;
double s2 = 0.0;
for (int i = m - 1; i >= l; i--) {
c3 = c2;
c2 = c;
s2 = s;
g = c * e[i];
h = c * p;
r = Math.hypot(p, e[i]);
e[i + 1] = s * r;
s = e[i] / r;
c = p / r;
p = c * d[i] - s * g;
d[i + 1] = h + s * (c * g + s * d[i]);
// Accumulate transformation.
for (int k = 0; k < n; k++) {
h = V.get(k, i + 1);
V.set(k, i + 1, s * V.get(k, i) + c * h);
V.set(k, i, c * V.get(k, i) - s * h);
}
}
p = -s * s2 * c3 * el1 * e[l] / dl1;
e[l] = s * p;
d[l] = c * p;
// Check for convergence.
} while (Math.abs(e[l]) > Math.EPSILON * tst1);
}
d[l] = d[l] + f;
e[l] = 0.0;
}
// Sort eigenvalues and corresponding vectors.
for (int i = 0; i < n - 1; i++) {
int k = i;
double p = d[i];
for (int j = i + 1; j < n; j++) {
if (d[j] > p) {
k = j;
p = d[j];
}
}
if (k != i) {
d[k] = d[i];
d[i] = p;
for (int j = 0; j < n; j++) {
p = V.get(j, i);
V.set(j, i, V.get(j, k));
V.set(j, k, p);
}
}
}
}
/**
* Given a square matrix, this routine replaces it by a balanced matrix with
* identical eigenvalues. A symmetric matrix is already balanced and is
* unaffected by this procedure.
*/
private static double[] balance(DenseMatrix A) {
double sqrdx = Math.RADIX * Math.RADIX;
int n = A.nrows();
double[] scale = new double[n];
for (int i = 0; i < n; i++) {
scale[i] = 1.0;
}
boolean done = false;
while (!done) {
done = true;
for (int i = 0; i < n; i++) {
double r = 0.0, c = 0.0;
for (int j = 0; j < n; j++) {
if (j != i) {
c += Math.abs(A.get(j, i));
r += Math.abs(A.get(i, j));
}
}
if (c != 0.0 && r != 0.0) {
double g = r / Math.RADIX;
double f = 1.0;
double s = c + r;
while (c < g) {
f *= Math.RADIX;
c *= sqrdx;
}
g = r * Math.RADIX;
while (c > g) {
f /= Math.RADIX;
c /= sqrdx;
}
if ((c + r) / f < 0.95 * s) {
done = false;
g = 1.0 / f;
scale[i] *= f;
for (int j = 0; j < n; j++) {
A.mul(i, j, g);
}
for (int j = 0; j < n; j++) {
A.mul(j, i, f);
}
}
}
}
}
return scale;
}
/**
* Form the eigenvectors of a real nonsymmetric matrix by back transforming
* those of the corresponding balanced matrix determined by balance.
*/
private static void balbak(DenseMatrix V, double[] scale) {
int n = V.nrows();
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
V.mul(i, j, scale[i]);
}
}
}
/**
* Reduce a real nonsymmetric matrix to upper Hessenberg form.
*/
private static int[] elmhes(DenseMatrix A) {
int n = A.nrows();
int[] perm = new int[n];
for (int m = 1; m < n - 1; m++) {
double x = 0.0;
int i = m;
for (int j = m; j < n; j++) {
if (Math.abs(A.get(j, m - 1)) > Math.abs(x)) {
x = A.get(j, m - 1);
i = j;
}
}
perm[m] = i;
if (i != m) {
for (int j = m - 1; j < n; j++) {
double swap = A.get(i, j);
A.set(i, j, A.get(m, j));
A.set(m, j, swap);
}
for (int j = 0; j < n; j++) {
double swap = A.get(j, i);
A.set(j, i, A.get(j, m));
A.set(j, m, swap);
}
}
if (x != 0.0) {
for (i = m + 1; i < n; i++) {
double y = A.get(i, m - 1);
if (y != 0.0) {
y /= x;
A.set(i, m - 1, y);
for (int j = m; j < n; j++) {
A.sub(i, j, y * A.get(m, j));
}
for (int j = 0; j < n; j++) {
A.add(j, m, y * A.get(j, i));
}
}
}
}
}
return perm;
}
/**
* Accumulate the stabilized elementary similarity transformations used
* in the reduction of a real nonsymmetric matrix to upper Hessenberg form by elmhes.
*/
private static void eltran(DenseMatrix A, DenseMatrix V, int[] perm) {
int n = A.nrows();
for (int mp = n - 2; mp > 0; mp--) {
for (int k = mp + 1; k < n; k++) {
V.set(k, mp, A.get(k, mp - 1));
}
int i = perm[mp];
if (i != mp) {
for (int j = mp; j < n; j++) {
V.set(mp, j, V.get(i, j));
V.set(i, j, 0.0);
}
V.set(i, mp, 1.0);
}
}
}
/**
* Find all eigenvalues of an upper Hessenberg matrix. On input, A can be
* exactly as output from elmhes. On output, it is destroyed.
*/
private static void hqr(DenseMatrix A, double[] d, double[] e) {
int n = A.nrows();
int nn, m, l, k, j, its, i, mmin;
double z, y, x, w, v, u, t, s, r = 0.0, q = 0.0, p = 0.0, anorm = 0.0;
for (i = 0; i < n; i++) {
for (j = Math.max(i - 1, 0); j < n; j++) {
anorm += Math.abs(A.get(i, j));
}
}
nn = n - 1;
t = 0.0;
while (nn >= 0) {
its = 0;
do {
for (l = nn; l > 0; l--) {
s = Math.abs(A.get(l - 1, l - 1) + Math.abs(A.get(l, l)));
if (s == 0.0) {
s = anorm;
}
if (Math.abs(A.get(l, l - 1)) <= Math.EPSILON * s) {
A.set(l, l - 1, 0.0);
break;
}
}
x = A.get(nn, nn);
if (l == nn) {
d[nn--] = x + t;
} else {
y = A.get(nn - 1, nn - 1);
w = A.get(nn, nn - 1) * A.get(nn - 1, nn);
if (l == nn - 1) {
p = 0.5 * (y - x);
q = p * p + w;
z = Math.sqrt(Math.abs(q));
x += t;
if (q >= 0.0) {
z = p + Math.copySign(z, p);
d[nn - 1] = d[nn] = x + z;
if (z != 0.0) {
d[nn] = x - w / z;
}
} else {
d[nn] = x + p;
e[nn] = -z;
d[nn - 1] = d[nn];
e[nn - 1] = -e[nn];
}
nn -= 2;
} else {
if (its == 30) {
throw new IllegalStateException("Too many iterations in hqr");
}
if (its == 10 || its == 20) {
t += x;
for (i = 0; i < nn + 1; i++) {
A.sub(i, i, x);
}
s = Math.abs(A.get(nn, nn - 1)) + Math.abs(A.get(nn - 1, nn - 2));
y = x = 0.75 * s;
w = -0.4375 * s * s;
}
++its;
for (m = nn - 2; m >= l; m--) {
z = A.get(m, m);
r = x - z;
s = y - z;
p = (r * s - w) / A.get(m + 1, m) + A.get(m, m + 1);
q = A.get(m + 1, m + 1) - z - r - s;
r = A.get(m + 2, m + 1);
s = Math.abs(p) + Math.abs(q) + Math.abs(r);
p /= s;
q /= s;
r /= s;
if (m == l) {
break;
}
u = Math.abs(A.get(m, m - 1)) * (Math.abs(q) + Math.abs(r));
v = Math.abs(p) * (Math.abs(A.get(m - 1, m - 1)) + Math.abs(z) + Math.abs(A.get(m + 1, m + 1)));
if (u <= Math.EPSILON * v) {
break;
}
}
for (i = m; i < nn - 1; i++) {
A.set(i + 2, i, 0.0);
if (i != m) {
A.set(i + 2, i - 1, 0.0);
}
}
for (k = m; k < nn; k++) {
if (k != m) {
p = A.get(k, k - 1);
q = A.get(k + 1, k - 1);
r = 0.0;
if (k + 1 != nn) {
r = A.get(k + 2, k - 1);
}
if ((x = Math.abs(p) + Math.abs(q) + Math.abs(r)) != 0.0) {
p /= x;
q /= x;
r /= x;
}
}
if ((s = Math.copySign(Math.sqrt(p * p + q * q + r * r), p)) != 0.0) {
if (k == m) {
if (l != m) {
A.set(k, k - 1, -A.get(k, k - 1));
}
} else {
A.set(k, k - 1, -s * x);
}
p += s;
x = p / s;
y = q / s;
z = r / s;
q /= p;
r /= p;
for (j = k; j < nn + 1; j++) {
p = A.get(k, j) + q * A.get(k + 1, j);
if (k + 1 != nn) {
p += r * A.get(k + 2, j);
A.sub(k + 2, j, p * z);
}
A.sub(k + 1, j, p * y);
A.sub(k, j, p * x);
}
mmin = nn < k + 3 ? nn : k + 3;
for (i = l; i < mmin + 1; i++) {
p = x * A.get(i, k) + y * A.get(i, k + 1);
if (k + 1 != nn) {
p += z * A.get(i, k + 2);
A.sub(i, k + 2, p * r);
}
A.sub(i, k + 1, p * q);
A.sub(i, k, p);
}
}
}
}
}
} while (l + 1 < nn);
}
}
/**
* Finds all eigenvalues of an upper Hessenberg matrix A[0..n-1][0..n-1].
* On input A can be exactly as output from elmhes and eltran. On output, d and e
* contain the eigenvalues of A, while V is a matrix whose columns contain
* the corresponding eigenvectors. The eigenvalues are not sorted, except
* that complex conjugate pairs appear consecutively with the eigenvalue
* having the positive imaginary part. For a complex eigenvalue, only the
* eigenvector corresponding to the eigenvalue with positive imaginary part
* is stored, with real part in V[0..n-1][i] and imaginary part in V[0..n-1][i+1].
* The eigenvectors are not normalized.
*/
private static void hqr2(DenseMatrix A, DenseMatrix V, double[] d, double[] e) {
int n = A.nrows();
int nn, m, l, k, j, its, i, mmin, na;
double z = 0.0, y, x, w, v, u, t, s = 0.0, r = 0.0, q = 0.0, p = 0.0, anorm = 0.0, ra, sa, vr, vi;
for (i = 0; i < n; i++) {
for (j = Math.max(i - 1, 0); j < n; j++) {
anorm += Math.abs(A.get(i, j));
}
}
nn = n - 1;
t = 0.0;
while (nn >= 0) {
its = 0;
do {
for (l = nn; l > 0; l--) {
s = Math.abs(A.get(l - 1, l - 1)) + Math.abs(A.get(l, l));
if (s == 0.0) {
s = anorm;
}
if (Math.abs(A.get(l, l - 1)) <= Math.EPSILON * s) {
A.set(l, l - 1, 0.0);
break;
}
}
x = A.get(nn, nn);
if (l == nn) {
d[nn] = x + t;
A.set(nn, nn, x + t);
nn--;
} else {
y = A.get(nn - 1, nn - 1);
w = A.get(nn, nn - 1) * A.get(nn - 1, nn);
if (l == nn - 1) {
p = 0.5 * (y - x);
q = p * p + w;
z = Math.sqrt(Math.abs(q));
x += t;
A.set(nn, nn, x );
A.set(nn - 1, nn - 1, y + t);
if (q >= 0.0) {
z = p + Math.copySign(z, p);
d[nn - 1] = d[nn] = x + z;
if (z != 0.0) {
d[nn] = x - w / z;
}
x = A.get(nn, nn - 1);
s = Math.abs(x) + Math.abs(z);
p = x / s;
q = z / s;
r = Math.sqrt(p * p + q * q);
p /= r;
q /= r;
for (j = nn - 1; j < n; j++) {
z = A.get(nn - 1, j);
A.set(nn - 1, j, q * z + p * A.get(nn, j));
A.set(nn, j, q * A.get(nn, j) - p * z);
}
for (i = 0; i <= nn; i++) {
z = A.get(i, nn - 1);
A.set(i, nn - 1, q * z + p * A.get(i, nn));
A.set(i, nn, q * A.get(i, nn) - p * z);
}
for (i = 0; i < n; i++) {
z = V.get(i, nn - 1);
V.set(i, nn - 1, q * z + p * V.get(i, nn));
V.set(i, nn, q * V.get(i, nn) - p * z);
}
} else {
d[nn] = x + p;
e[nn] = -z;
d[nn - 1] = d[nn];
e[nn - 1] = -e[nn];
}
nn -= 2;
} else {
if (its == 30) {
throw new IllegalArgumentException("Too many iterations in hqr");
}
if (its == 10 || its == 20) {
t += x;
for (i = 0; i < nn + 1; i++) {
A.sub(i, i, x);
}
s = Math.abs(A.get(nn, nn - 1)) + Math.abs(A.get(nn - 1, nn - 2));
y = x = 0.75 * s;
w = -0.4375 * s * s;
}
++its;
for (m = nn - 2; m >= l; m--) {
z = A.get(m, m);
r = x - z;
s = y - z;
p = (r * s - w) / A.get(m + 1, m) + A.get(m, m + 1);
q = A.get(m + 1, m + 1) - z - r - s;
r = A.get(m + 2, m + 1);
s = Math.abs(p) + Math.abs(q) + Math.abs(r);
p /= s;
q /= s;
r /= s;
if (m == l) {
break;
}
u = Math.abs(A.get(m, m - 1)) * (Math.abs(q) + Math.abs(r));
v = Math.abs(p) * (Math.abs(A.get(m - 1, m - 1)) + Math.abs(z) + Math.abs(A.get(m + 1, m + 1)));
if (u <= Math.EPSILON * v) {
break;
}
}
for (i = m; i < nn - 1; i++) {
A.set(i + 2, i , 0.0);
if (i != m) {
A.set(i + 2, i - 1, 0.0);
}
}
for (k = m; k < nn; k++) {
if (k != m) {
p = A.get(k, k - 1);
q = A.get(k + 1, k - 1);
r = 0.0;
if (k + 1 != nn) {
r = A.get(k + 2, k - 1);
}
if ((x = Math.abs(p) + Math.abs(q) + Math.abs(r)) != 0.0) {
p /= x;
q /= x;
r /= x;
}
}
if ((s = Math.copySign(Math.sqrt(p * p + q * q + r * r), p)) != 0.0) {
if (k == m) {
if (l != m) {
A.set(k, k - 1, -A.get(k, k - 1));
}
} else {
A.set(k, k - 1, -s * x);
}
p += s;
x = p / s;
y = q / s;
z = r / s;
q /= p;
r /= p;
for (j = k; j < n; j++) {
p = A.get(k, j) + q * A.get(k + 1, j);
if (k + 1 != nn) {
p += r * A.get(k + 2, j);
A.sub(k + 2, j, p * z);
}
A.sub(k + 1, j, p * y);
A.sub(k, j, p * x);
}
mmin = nn < k + 3 ? nn : k + 3;
for (i = 0; i < mmin + 1; i++) {
p = x * A.get(i, k) + y * A.get(i, k + 1);
if (k + 1 != nn) {
p += z * A.get(i, k + 2);
A.sub(i, k + 2, p * r);
}
A.sub(i, k + 1, p * q);
A.sub(i, k, p);
}
for (i = 0; i < n; i++) {
p = x * V.get(i, k) + y * V.get(i, k + 1);
if (k + 1 != nn) {
p += z * V.get(i, k + 2);
V.sub(i, k + 2, p * r);
}
V.sub(i, k + 1, p * q);
V.sub(i, k, p);
}
}
}
}
}
} while (l + 1 < nn);
}
if (anorm != 0.0) {
for (nn = n - 1; nn >= 0; nn--) {
p = d[nn];
q = e[nn];
na = nn - 1;
if (q == 0.0) {
m = nn;
A.set(nn, nn, 1.0);
for (i = nn - 1; i >= 0; i--) {
w = A.get(i, i) - p;
r = 0.0;
for (j = m; j <= nn; j++) {
r += A.get(i, j) * A.get(j, nn);
}
if (e[i] < 0.0) {
z = w;
s = r;
} else {
m = i;
if (e[i] == 0.0) {
t = w;
if (t == 0.0) {
t = Math.EPSILON * anorm;
}
A.set(i, nn, -r / t);
} else {
x = A.get(i, i + 1);
y = A.get(i + 1, i);
q = Math.sqr(d[i] - p) + Math.sqr(e[i]);
t = (x * s - z * r) / q;
A.set(i, nn, t);
if (Math.abs(x) > Math.abs(z)) {
A.set(i + 1, nn, (-r - w * t) / x);
} else {
A.set(i + 1, nn, (-s - y * t) / z);
}
}
t = Math.abs(A.get(i, nn));
if (Math.EPSILON * t * t > 1) {
for (j = i; j <= nn; j++) {
A.div(j, nn, t);
}
}
}
}
} else if (q < 0.0) {
m = na;
if (Math.abs(A.get(nn, na)) > Math.abs(A.get(na, nn))) {
A.set(na, na, q / A.get(nn, na));
A.set(na, nn, -(A.get(nn, nn) - p) / A.get(nn, na));
} else {
Complex temp = cdiv(0.0, -A.get(na, nn), A.get(na, na) - p, q);
A.set(na, na, temp.re());
A.set(na, nn, temp.im());
}
A.set(nn, na, 0.0);
A.set(nn, nn, 1.0);
for (i = nn - 2; i >= 0; i--) {
w = A.get(i, i) - p;
ra = sa = 0.0;
for (j = m; j <= nn; j++) {
ra += A.get(i, j) * A.get(j, na);
sa += A.get(i, j) * A.get(j, nn);
}
if (e[i] < 0.0) {
z = w;
r = ra;
s = sa;
} else {
m = i;
if (e[i] == 0.0) {
Complex temp = cdiv(-ra, -sa, w, q);
A.set(i, na, temp.re());
A.set(i, nn, temp.im());
} else {
x = A.get(i, i + 1);
y = A.get(i + 1, i);
vr = Math.sqr(d[i] - p) + Math.sqr(e[i]) - q * q;
vi = 2.0 * q * (d[i] - p);
if (vr == 0.0 && vi == 0.0) {
vr = Math.EPSILON * anorm * (Math.abs(w) + Math.abs(q) + Math.abs(x) + Math.abs(y) + Math.abs(z));
}
Complex temp = cdiv(x * r - z * ra + q * sa, x * s - z * sa - q * ra, vr, vi);
A.set(i, na, temp.re());
A.set(i, nn, temp.im());
if (Math.abs(x) > Math.abs(z) + Math.abs(q)) {
A.set(i + 1, na, (-ra - w * A.get(i, na) + q * A.get(i, nn)) / x);
A.set(i + 1, nn, (-sa - w * A.get(i, nn) - q * A.get(i, na)) / x);
} else {
temp = cdiv(-r - y * A.get(i, na), -s - y * A.get(i, nn), z, q);
A.set(i + 1, na, temp.re());
A.set(i + 1, nn, temp.im());
}
}
}
t = Math.max(Math.abs(A.get(i, na)), Math.abs(A.get(i, nn)));
if (Math.EPSILON * t * t > 1) {
for (j = i; j <= nn; j++) {
A.div(j, na, t);
A.div(j, nn, t);
}
}
}
}
}
for (j = n - 1; j >= 0; j--) {
for (i = 0; i < n; i++) {
z = 0.0;
for (k = 0; k <= j; k++) {
z += V.get(i, k) * A.get(k, j);
}
V.set(i, j, z);
}
}
}
}
/**
* Complex scalar division.
*/
private static Complex cdiv(double xr, double xi, double yr, double yi) {
double cdivr, cdivi;
double r, d;
if (Math.abs(yr) > Math.abs(yi)) {
r = yi / yr;
d = yr + r * yi;
cdivr = (xr + r * xi) / d;
cdivi = (xi - r * xr) / d;
} else {
r = yr / yi;
d = yi + r * yr;
cdivr = (r * xr + xi) / d;
cdivi = (r * xi - xr) / d;
}
return new Complex(cdivr, cdivi);
}
/**
* Sort eigenvalues.
*/
protected static void sort(double[] d, double[] e) {
int i = 0;
int n = d.length;
for (int j = 1; j < n; j++) {
double real = d[j];
double img = e[j];
for (i = j - 1; i >= 0; i--) {
if (d[i] >= d[j]) {
break;
}
d[i + 1] = d[i];
e[i + 1] = e[i];
}
d[i + 1] = real;
e[i + 1] = img;
}
}
/**
* Sort eigenvalues and eigenvectors.
*/
protected static void sort(double[] d, double[] e, DenseMatrix V) {
int i = 0;
int n = d.length;
double[] temp = new double[n];
for (int j = 1; j < n; j++) {
double real = d[j];
double img = e[j];
for (int k = 0; k < n; k++) {
temp[k] = V.get(k, j);
}
for (i = j - 1; i >= 0; i--) {
if (d[i] >= d[j]) {
break;
}
d[i + 1] = d[i];
e[i + 1] = e[i];
for (int k = 0; k < n; k++) {
V.set(k, i + 1, V.get(k, i));
}
}
d[i + 1] = real;
e[i + 1] = img;
for (int k = 0; k < n; k++) {
V.set(k, i + 1, temp[k]);
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy