All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.math.matrix.LU Maven / Gradle / Ivy

There is a newer version: 2024.12.1
Show newest version
/*******************************************************************************
 * Copyright (c) 2010 Haifeng Li
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *******************************************************************************/

package smile.math.matrix;

import smile.math.Math;

/**
 * For an m-by-n matrix A with m ≥ n, the LU decomposition is an m-by-n
 * unit lower triangular matrix L, an n-by-n upper triangular matrix U,
 * and a permutation vector piv of length m so that A(piv,:) = L*U.
 * If m < n, then L is m-by-m and U is m-by-n.
 * 

* The LU decomposition with pivoting always exists, even if the matrix is * singular. The primary use of the LU decomposition is in the solution of * square systems of simultaneous linear equations if it is not singular. *

* This decomposition can also be used to calculate the determinant. * * @author Haifeng Li */ public class LU { /** * Array for internal storage of decomposition. */ protected DenseMatrix lu; /** * pivot sign. */ protected int pivsign; /** * Internal storage of pivot vector. */ protected int[] piv; /** * True if the matrix is singular. */ protected boolean singular; /** * Constructor. * @param lu LU decomposition matrix * @param piv pivot vector * @param pivsign pivot sign. +1 if even number of row interchanges, -1 if odd number of row interchanges. * @param singular True if the matrix is singular */ public LU(DenseMatrix lu, int[] piv, int pivsign, boolean singular) { this.lu = lu; this.piv = piv; this.pivsign = pivsign; this.singular = singular; } /** * Constructor. * @param lu LU decomposition matrix * @param piv pivot vector * @param singular True if the matrix is singular */ public LU(DenseMatrix lu, int[] piv, boolean singular) { this.lu = lu; this.piv = piv; this.singular = singular; this.pivsign = 1; int n = Math.min(lu.nrows(), lu.ncols()); for (int i = 0; i < n; i++) { if (piv[i] != i) this.pivsign = -this.pivsign; } } /** * Returns true if the matrix is singular or false otherwise. */ public boolean isSingular() { return singular; } /** * Returns the matrix determinant */ public double det() { int m = lu.nrows(); int n = lu.ncols(); if (m != n) throw new IllegalArgumentException(String.format("Matrix is not square: %d x %d", m, n)); double d = (double) pivsign; for (int j = 0; j < n; j++) { d *= lu.get(j, j); } return d; } /** * Returns the matrix inverse. For pseudo inverse, use QRDecomposition. */ public DenseMatrix inverse() { int m = lu.nrows(); int n = lu.ncols(); if (m != n) { throw new IllegalArgumentException(String.format("Matrix is not square: %d x %d", m, n)); } DenseMatrix inv = Matrix.zeros(n, n); for (int i = 0; i < n; i++) { inv.set(i, piv[i], 1.0); } solve(inv); return inv; } /** * Solve A * x = b. * @param b right hand side of linear system. * On output, b will be overwritten with the solution matrix. * @exception RuntimeException if matrix is singular. */ public void solve(double[] b) { // B use b as the internal storage. Therefore b will contains the results. DenseMatrix B = Matrix.newInstance(b); solve(B); } /** * Solve A * X = B. B will be overwritten with the solution matrix on output. * @param B right hand side of linear system. * On output, B will be overwritten with the solution matrix. * @throws RuntimeException if matrix is singular. */ public void solve(DenseMatrix B) { int m = lu.nrows(); int n = lu.ncols(); int nrhs = B.ncols(); if (B.nrows() != m) throw new IllegalArgumentException(String.format("Row dimensions do not agree: A is %d x %d, but B is %d x %d", lu.nrows(), lu.ncols(), B.nrows(), B.ncols())); if (isSingular()) { throw new RuntimeException("Matrix is singular."); } DenseMatrix X = Matrix.zeros(B.nrows(), B.ncols()); // Copy right hand side with pivoting for (int j = 0; j < nrhs; j++) { for (int i = 0; i < m; i++) { X.set(i, j, B.get(piv[i], j)); } } // Solve L*Y = B(piv,:) for (int k = 0; k < n; k++) { for (int i = k + 1; i < n; i++) { for (int j = 0; j < nrhs; j++) { X.sub(i, j, X.get(k, j) * lu.get(i, k)); } } } // Solve U*X = Y; for (int k = n - 1; k >= 0; k--) { for (int j = 0; j < nrhs; j++) { X.div(k, j, lu.get(k, k)); } for (int i = 0; i < k; i++) { for (int j = 0; j < nrhs; j++) { X.sub(i, j, X.get(k, j) * lu.get(i, k)); } } } // Copy the result back to B. for (int j = 0; j < nrhs; j++) { for (int i = 0; i < m; i++) { B.set(i, j, X.get(i, j)); } } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy