smile.math.matrix.Matrix Maven / Gradle / Ivy
Show all versions of openchemlib Show documentation
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.math.matrix;
import smile.math.Math;
import smile.stat.distribution.GaussianDistribution;
import java.io.Serializable;
/**
* An abstract interface of matrix. The most important method is the matrix vector
* multiplication, which is the only operation needed in many iterative matrix
* algorithms, e.g. biconjugate gradient method for solving linear equations and
* power iteration and Lanczos algorithm for eigen decomposition, which are
* usually very efficient for very large and sparse matrices.
*
* A matrix is a rectangular array of numbers. An item in a matrix is called
* an entry or an element. Entries are often denoted by a variable with two
* subscripts. Matrices of the same size can be added and subtracted entrywise
* and matrices of compatible size can be multiplied. These operations have
* many of the properties of ordinary arithmetic, except that matrix
* multiplication is not commutative, that is, AB and BA are not equal in
* general.
*
* Matrices are a key tool in linear algebra. One use of matrices is to
* represent linear transformations and matrix multiplication corresponds
* to composition of linear transformations. Matrices can also keep track of
* the coefficients in a system of linear equations. For a square matrix,
* the determinant and inverse matrix (when it exists) govern the behavior
* of solutions to the corresponding system of linear equations, and
* eigenvalues and eigenvectors provide insight into the geometry of
* the associated linear transformation.
*
* There are several methods to render matrices into a more easily accessible
* form. They are generally referred to as matrix transformation or matrix
* decomposition techniques. The interest of all these decomposition techniques
* is that they preserve certain properties of the matrices in question, such
* as determinant, rank or inverse, so that these quantities can be calculated
* after applying the transformation, or that certain matrix operations are
* algorithmically easier to carry out for some types of matrices.
*
* The LU decomposition factors matrices as a product of lower (L) and an upper
* triangular matrices (U). Once this decomposition is calculated, linear
* systems can be solved more efficiently, by a simple technique called
* forward and back substitution. Likewise, inverses of triangular matrices
* are algorithmically easier to calculate. The QR decomposition factors matrices
* as a product of an orthogonal (Q) and a right triangular matrix (R). QR decomposition
* is often used to solve the linear least squares problem, and is the basis for
* a particular eigenvalue algorithm, the QR algorithm. Singular value decomposition
* expresses any matrix A as a product UDV', where U and V are unitary matrices
* and D is a diagonal matrix. The eigendecomposition or diagonalization
* expresses A as a product VDV-1, where D is a diagonal matrix and
* V is a suitable invertible matrix. If A can be written in this form, it is
* called diagonalizable.
*
* @author Haifeng Li
*/
public interface Matrix extends Serializable {
/**
* Returns an matrix initialized by given two-dimensional array.
*/
static DenseMatrix newInstance(double[][] A) {
return Factory.matrix(A);
}
/**
* Returns a column vector/matrix initialized by given one-dimensional array.
*/
static DenseMatrix newInstance(double[] A) {
return Factory.matrix(A);
}
/**
* Creates a matrix filled with given value.
*/
static DenseMatrix newInstance(int rows, int cols, double value) {
return Factory.matrix(rows, cols, value);
}
/**
* Returns all-zero matrix.
*/
static DenseMatrix zeros(int rows, int cols) {
return Factory.matrix(rows, cols);
}
/**
* Return an all-one matrix.
*/
static DenseMatrix ones(int rows, int cols) {
return Factory.matrix(rows, cols, 1.0);
}
/**
* Returns an n-by-n identity matrix.
*/
static DenseMatrix eye(int n) {
DenseMatrix matrix = Factory.matrix(n, n);
for (int i = 0; i < n; i++) {
matrix.set(i, i, 1.0);
}
return matrix;
}
/**
* Returns an m-by-n identity matrix.
*/
static DenseMatrix eye(int m, int n) {
DenseMatrix matrix = Factory.matrix(m, n);
int k = Math.min(m, n);
for (int i = 0; i < k; i++) {
matrix.set(i, i, 1.0);
}
return matrix;
}
/**
* Returns a square diagonal matrix with the elements of vector diag on the main diagonal.
* @param A the array of diagonal elements.
*/
static DenseMatrix diag(double[] A) {
int n = A.length;
DenseMatrix matrix = Factory.matrix(n, n);
for (int i = 0; i < n; i++) {
matrix.set(i, i, A[i]);
}
return matrix;
}
/**
* Returns a random matrix of standard normal distributed values with given mean and standard dev.
*/
static DenseMatrix randn(int rows, int cols) {
return randn(rows, cols, 0.0, 1.0);
}
/**
* Returns a random matrix of normal distributed values with given mean and standard dev.
*/
static DenseMatrix randn(int rows, int cols, double mu, double sigma) {
DenseMatrix a = zeros(rows, cols);
GaussianDistribution g = new GaussianDistribution(mu, sigma);
for (int j = 0; j < cols; j++) {
for (int i = 0; i < rows; i++) {
a.set(i, j, g.rand());
}
}
return a;
}
/**
* Returns the string representation of matrix.
* @param full Print the full matrix if true. Otherwise only print top left 7 x 7 submatrix.
*/
default String toString(boolean full) {
StringBuilder sb = new StringBuilder();
int m = full ? nrows() : Math.min(7, nrows());
int n = full ? ncols() : Math.min(7, ncols());
String newline = n < ncols() ? "...\n" : "\n";
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
sb.append(String.format("%8.4f ", get(i, j)));
}
sb.append(newline);
}
if (m < nrows()) {
sb.append(" ...\n");
}
return sb.toString();
}
/** Returns true if the matrix is symmetric. */
default boolean isSymmetric() {
return false;
}
/**
* Sets if the matrix is symmetric. It is the caller's responability to
* make sure if the matrix symmetric. Also the matrix won't update this
* property if the matrix values are changed.
*/
default void setSymmetric(boolean symmetric) {
throw new UnsupportedOperationException();
}
/**
* Returns the number of rows.
*/
int nrows();
/**
* Returns the number of columns.
*/
int ncols();
/**
* Returns the matrix transpose.
*/
Matrix transpose();
/**
* Returns the entry value at row i and column j.
*/
double get(int i, int j);
/**
* Returns the entry value at row i and column j. For Scala users.
*/
default double apply(int i, int j) {
return get(i, j);
}
/**
* Returns the diagonal elements.
*/
default double[] diag() {
int n = Math.min(nrows(), ncols());
double[] d = new double[n];
for (int i = 0; i < n; i++) {
d[i] = get(i, i);
}
return d;
}
/**
* Returns the matrix trace. The sum of the diagonal elements.
*/
default double trace() {
int n = Math.min(nrows(), ncols());
double t = 0.0;
for (int i = 0; i < n; i++) {
t += get(i, i);
}
return t;
}
/**
* Returns A' * A
*/
Matrix ata();
/**
* Returns A * A'
*/
Matrix aat();
/**
* y = A * x
* @return y
*/
double[] ax(double[] x, double[] y);
/**
* y = A * x + y
* @return y
*/
double[] axpy(double[] x, double[] y);
/**
* y = A * x + b * y
* @return y
*/
double[] axpy(double[] x, double[] y, double b);
/**
* y = A' * x
* @return y
*/
double[] atx(double[] x, double[] y);
/**
* y = A' * x + y
* @return y
*/
double[] atxpy(double[] x, double[] y);
/**
* y = A' * x + b * y
* @return y
*/
double[] atxpy(double[] x, double[] y, double b);
/**
* Find k largest approximate eigen pairs of a symmetric matrix by the
* Lanczos algorithm.
*
* @param k the number of eigenvalues we wish to compute for the input matrix.
* This number cannot exceed the size of A.
*/
default EVD eigen(int k) {
return eigen(k, 1.0E-8, 10 * nrows());
}
/**
* Find k largest approximate eigen pairs of a symmetric matrix by the
* Lanczos algorithm.
*
* @param k the number of eigenvalues we wish to compute for the input matrix.
* This number cannot exceed the size of A.
* @param kappa relative accuracy of ritz values acceptable as eigenvalues.
* @param maxIter Maximum number of iterations.
*/
default EVD eigen(int k, double kappa, int maxIter) {
try {
Class> clazz = Class.forName("smile.netlib.ARPACK");
java.lang.reflect.Method method = clazz.getMethod("eigen", Matrix.class, Integer.TYPE, String.class, Double.TYPE, Integer.TYPE);
return (EVD) method.invoke(null, this, k, "LA", kappa, maxIter);
} catch (Exception e) {
if (!(e instanceof ClassNotFoundException)) {
org.slf4j.Logger logger = org.slf4j.LoggerFactory.getLogger(Matrix.class);
logger.info("Matrix.eigen({}, {}, {}):", k, kappa, maxIter, e);
}
return Lanczos.eigen(this, k, kappa, maxIter);
}
}
/**
* Find k largest approximate singular triples of a matrix by the
* Lanczos algorithm.
*
* @param k the number of singular triples we wish to compute for the input matrix.
* This number cannot exceed the size of A.
*/
default SVD svd(int k) {
return svd(k, 1.0E-8, 10 * nrows());
}
/**
* Find k largest approximate singular triples of a matrix by the
* Lanczos algorithm.
*
* @param k the number of singular triples we wish to compute for the input matrix.
* This number cannot exceed the size of A.
* @param kappa relative accuracy of ritz values acceptable as singular values.
* @param maxIter Maximum number of iterations.
*/
default SVD svd(int k, double kappa, int maxIter) {
ATA B = new ATA(this);
EVD eigen = Lanczos.eigen(B, k, kappa, maxIter);
double[] s = eigen.getEigenValues();
for (int i = 0; i < s.length; i++) {
s[i] = Math.sqrt(s[i]);
}
int m = nrows();
int n = ncols();
if (m >= n) {
DenseMatrix V = eigen.getEigenVectors();
double[] tmp = new double[m];
double[] vi = new double[n];
DenseMatrix U = Matrix.zeros(m, s.length);
for (int i = 0; i < s.length; i++) {
for (int j = 0; j < n; j++) {
vi[j] = V.get(j, i);
}
ax(vi, tmp);
for (int j = 0; j < m; j++) {
U.set(j, i, tmp[j] / s[i]);
}
}
return new SVD(U, V, s);
} else {
DenseMatrix U = eigen.getEigenVectors();
double[] tmp = new double[n];
double[] ui = new double[m];
DenseMatrix V = Matrix.zeros(n, s.length);
for (int i = 0; i < s.length; i++) {
for (int j = 0; j < m; j++) {
ui[j] = U.get(j, i);
}
atx(ui, tmp);
for (int j = 0; j < n; j++) {
V.set(j, i, tmp[j] / s[i]);
}
}
return new SVD(U, V, s);
}
}
}