All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.math.special.Erf Maven / Gradle / Ivy

There is a newer version: 2024.12.1
Show newest version
/*******************************************************************************
 * Copyright (c) 2010 Haifeng Li
 *   
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *  
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *******************************************************************************/

package smile.math.special;

import smile.math.Math;

/**
 * The error function (also called the Gauss error function) is a special
 * function of sigmoid shape which occurs in probability, statistics, materials
 * science, and partial differential equations. It is defined as:
 * 

* erf(x) = 0x e-t2dt *

* The complementary error function, denoted erfc, is defined as erfc(x) = 1 - erf(x). * The error function and complementary error function are special cases of the * incomplete gamma function. * * @author Haifeng Li */ public class Erf { /** Utility classes should not have public constructors. */ private Erf() { } private static final double[] cof = { -1.3026537197817094, 6.4196979235649026e-1, 1.9476473204185836e-2, -9.561514786808631e-3, -9.46595344482036e-4, 3.66839497852761e-4, 4.2523324806907e-5, -2.0278578112534e-5, -1.624290004647e-6, 1.303655835580e-6, 1.5626441722e-8, -8.5238095915e-8, 6.529054439e-9, 5.059343495e-9, -9.91364156e-10, -2.27365122e-10, 9.6467911e-11, 2.394038e-12, -6.886027e-12, 8.94487e-13, 3.13092e-13, -1.12708e-13, 3.81e-16, 7.106e-15, -1.523e-15, -9.4e-17, 1.21e-16, -2.8e-17 }; /** * The Gauss error function. */ public static double erf(double x) { if (x >= 0.) { return 1.0 - erfccheb(x); } else { return erfccheb(-x) - 1.0; } } /** * The complementary error function. */ public static double erfc(double x) { if (x >= 0.) { return erfccheb(x); } else { return 2.0 - erfccheb(-x); } } /** * The complementary error function with fractional error everywhere less * than 1.2 × 10-7. This concise routine is faster than erfc. */ public static double erfcc(double x) { double z = Math.abs(x); double t = 2.0 / (2.0 + z); double ans = t * Math.exp(-z * z - 1.26551223 + t * (1.00002368 + t * (0.37409196 + t * (0.09678418 + t * (-0.18628806 + t * (0.27886807 + t * (-1.13520398 + t * (1.48851587 + t * (-0.82215223 + t * 0.17087277))))))))); return (x >= 0.0 ? ans : 2.0 - ans); } private static double erfccheb(double z) { double t, ty, tmp, d = 0., dd = 0.; if (z < 0.) { throw new IllegalArgumentException("erfccheb requires nonnegative argument"); } t = 2. / (2. + z); ty = 4. * t - 2.; for (int j = cof.length - 1; j > 0; j--) { tmp = d; d = ty * d - dd + cof[j]; dd = tmp; } return t * Math.exp(-z * z + 0.5 * (cof[0] + ty * d) - dd); } /** * The inverse complementary error function. */ public static double inverfc(double p) { double x, err, t, pp; if (p >= 2.0) { return -100.; } if (p <= 0.0) { return 100.; } pp = (p < 1.0) ? p : 2. - p; t = Math.sqrt(-2. * Math.log(pp / 2.)); x = -0.70711 * ((2.30753 + t * 0.27061) / (1. + t * (0.99229 + t * 0.04481)) - t); for (int j = 0; j < 2; j++) { err = erfc(x) - pp; x += err / (1.12837916709551257 * Math.exp(-x * x) - x * err); } return (p < 1.0 ? x : -x); } /** * The inverse error function. */ public static double inverf(double p) { return inverfc(1. - p); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy