smile.util.SmileUtils Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of openchemlib Show documentation
Show all versions of openchemlib Show documentation
Open Source Chemistry Library
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.util;
import smile.clustering.CLARANS;
import smile.clustering.KMeans;
import smile.data.Attribute;
import smile.math.distance.Metric;
import smile.math.Math;
import smile.math.rbf.GaussianRadialBasis;
import smile.sort.QuickSort;
import java.util.Arrays;
/**
* Some useful functions.
*
* @author Haifeng Li
*/
public class SmileUtils {
/** Utility classes should not have public constructors. */
private SmileUtils() {
}
/**
* Sorts each variable and returns the index of values in ascending order.
* Only numeric attributes will be sorted. Note that the order of original
* array is NOT altered.
*
* @param x a set of variables to be sorted. Each row is an instance. Each
* column is a variable.
* @return the index of values in ascending order
*/
public static int[][] sort(Attribute[] attributes, double[][] x) {
int n = x.length;
int p = x[0].length;
double[] a = new double[n];
int[][] index = new int[p][];
for (int j = 0; j < p; j++) {
if (attributes[j].getType() == Attribute.Type.NUMERIC) {
for (int i = 0; i < n; i++) {
a[i] = x[i][j];
}
index[j] = QuickSort.sort(a);
}
}
return index;
}
/**
* Learns Gaussian RBF function and centers from data. The centers are
* chosen as the centroids of K-Means. Let dmax be the maximum
* distance between the chosen centers, the standard deviation (i.e. width)
* of Gaussian radial basis function is dmax / sqrt(2*k), where
* k is number of centers. This choice would be close to the optimal
* solution if the data were uniformly distributed in the input space,
* leading to a uniform distribution of centroids.
* @param x the training dataset.
* @param centers an array to store centers on output. Its length is used as k of k-means.
* @return a Gaussian RBF function with parameter learned from data.
*/
public static GaussianRadialBasis learnGaussianRadialBasis(double[][] x, double[][] centers) {
int k = centers.length;
KMeans kmeans = new KMeans(x, k, 10);
System.arraycopy(kmeans.centroids(), 0, centers, 0, k);
double r0 = 0.0;
for (int i = 0; i < k; i++) {
for (int j = 0; j < i; j++) {
double d = Math.distance(centers[i], centers[j]);
if (r0 < d) {
r0 = d;
}
}
}
r0 /= Math.sqrt(2*k);
return new GaussianRadialBasis(r0);
}
/**
* Learns Gaussian RBF function and centers from data. The centers are
* chosen as the centroids of K-Means. The standard deviation (i.e. width)
* of Gaussian radial basis function is estimated by the p-nearest neighbors
* (among centers, not all samples) heuristic. A suggested value for
* p is 2.
* @param x the training dataset.
* @param centers an array to store centers on output. Its length is used as k of k-means.
* @param p the number of nearest neighbors of centers to estimate the width
* of Gaussian RBF functions.
* @return Gaussian RBF functions with parameter learned from data.
*/
public static GaussianRadialBasis[] learnGaussianRadialBasis(double[][] x, double[][] centers, int p) {
if (p < 1) {
throw new IllegalArgumentException("Invalid number of nearest neighbors: " + p);
}
int k = centers.length;
KMeans kmeans = new KMeans(x, k, 10);
System.arraycopy(kmeans.centroids(), 0, centers, 0, k);
p = Math.min(p, k-1);
double[] r = new double[k];
GaussianRadialBasis[] rbf = new GaussianRadialBasis[k];
for (int i = 0; i < k; i++) {
for (int j = 0; j < k; j++) {
r[j] = Math.distance(centers[i], centers[j]);
}
Arrays.sort(r);
double r0 = 0.0;
for (int j = 1; j <= p; j++) {
r0 += r[j];
}
r0 /= p;
rbf[i] = new GaussianRadialBasis(r0);
}
return rbf;
}
/**
* Learns Gaussian RBF function and centers from data. The centers are
* chosen as the centroids of K-Means. The standard deviation (i.e. width)
* of Gaussian radial basis function is estimated as the width of each
* cluster multiplied with a given scaling parameter r.
* @param x the training dataset.
* @param centers an array to store centers on output. Its length is used as k of k-means.
* @param r the scaling parameter.
* @return Gaussian RBF functions with parameter learned from data.
*/
public static GaussianRadialBasis[] learnGaussianRadialBasis(double[][] x, double[][] centers, double r) {
if (r <= 0.0) {
throw new IllegalArgumentException("Invalid scaling parameter: " + r);
}
int k = centers.length;
KMeans kmeans = new KMeans(x, k, 10);
System.arraycopy(kmeans.centroids(), 0, centers, 0, k);
int n = x.length;
int[] y = kmeans.getClusterLabel();
double[] sigma = new double[k];
for (int i = 0; i < n; i++) {
sigma[y[i]] += Math.squaredDistance(x[i], centers[y[i]]);
}
int[] ni = kmeans.getClusterSize();
GaussianRadialBasis[] rbf = new GaussianRadialBasis[k];
for (int i = 0; i < k; i++) {
if (ni[i] >= 5 || sigma[i] != 0.0) {
sigma[i] = Math.sqrt(sigma[i] / ni[i]);
} else {
sigma[i] = Double.POSITIVE_INFINITY;
for (int j = 0; j < k; j++) {
if (i != j) {
double d = Math.distance(centers[i], centers[j]);
if (d < sigma[i]) {
sigma[i] = d;
}
}
}
sigma[i] /= 2.0;
}
rbf[i] = new GaussianRadialBasis(r * sigma[i]);
}
return rbf;
}
/**
* Learns Gaussian RBF function and centers from data. The centers are
* chosen as the medoids of CLARANS. Let dmax be the maximum
* distance between the chosen centers, the standard deviation (i.e. width)
* of Gaussian radial basis function is dmax / sqrt(2*k), where
* k is number of centers. In this way, the radial basis functions are not
* too peaked or too flat. This choice would be close to the optimal
* solution if the data were uniformly distributed in the input space,
* leading to a uniform distribution of medoids.
* @param x the training dataset.
* @param centers an array to store centers on output. Its length is used as k of CLARANS.
* @param distance the distance functor.
* @return a Gaussian RBF function with parameter learned from data.
*/
public static GaussianRadialBasis learnGaussianRadialBasis(T[] x, T[] centers, Metric distance) {
int k = centers.length;
CLARANS clarans = new CLARANS<>(x, distance, k, Math.min(100, (int) Math.round(0.01 * k * (x.length - k))));
System.arraycopy(clarans.medoids(), 0, centers, 0, k);
double r0 = 0.0;
for (int i = 0; i < k; i++) {
for (int j = 0; j < i; j++) {
double d = distance.d(centers[i], centers[j]);
if (r0 < d) {
r0 = d;
}
}
}
r0 /= Math.sqrt(2*k);
return new GaussianRadialBasis(r0);
}
/**
* Learns Gaussian RBF function and centers from data. The centers are
* chosen as the medoids of CLARANS. The standard deviation (i.e. width)
* of Gaussian radial basis function is estimated by the p-nearest neighbors
* (among centers, not all samples) heuristic. A suggested value for
* p is 2.
* @param x the training dataset.
* @param centers an array to store centers on output. Its length is used as k of CLARANS.
* @param distance the distance functor.
* @param p the number of nearest neighbors of centers to estimate the width
* of Gaussian RBF functions.
* @return Gaussian RBF functions with parameter learned from data.
*/
public static GaussianRadialBasis[] learnGaussianRadialBasis(T[] x, T[] centers, Metric distance, int p) {
if (p < 1) {
throw new IllegalArgumentException("Invalid number of nearest neighbors: " + p);
}
int k = centers.length;
CLARANS clarans = new CLARANS<>(x, distance, k, Math.min(100, (int) Math.round(0.01 * k * (x.length - k))));
System.arraycopy(clarans.medoids(), 0, centers, 0, k);
p = Math.min(p, k-1);
double[] r = new double[k];
GaussianRadialBasis[] rbf = new GaussianRadialBasis[k];
for (int i = 0; i < k; i++) {
for (int j = 0; j < k; j++) {
r[j] = distance.d(centers[i], centers[j]);
}
Arrays.sort(r);
double r0 = 0.0;
for (int j = 1; j <= p; j++) {
r0 += r[j];
}
r0 /= p;
rbf[i] = new GaussianRadialBasis(r0);
}
return rbf;
}
/**
* Learns Gaussian RBF function and centers from data. The centers are
* chosen as the medoids of CLARANS. The standard deviation (i.e. width)
* of Gaussian radial basis function is estimated as the width of each
* cluster multiplied with a given scaling parameter r.
* @param x the training dataset.
* @param centers an array to store centers on output. Its length is used as k of CLARANS.
* @param distance the distance functor.
* @param r the scaling parameter.
* @return Gaussian RBF functions with parameter learned from data.
*/
public static GaussianRadialBasis[] learnGaussianRadialBasis(T[] x, T[] centers, Metric distance, double r) {
if (r <= 0.0) {
throw new IllegalArgumentException("Invalid scaling parameter: " + r);
}
int k = centers.length;
CLARANS clarans = new CLARANS<>(x, distance, k, Math.min(100, (int) Math.round(0.01 * k * (x.length - k))));
System.arraycopy(clarans.medoids(), 0, centers, 0, k);
int n = x.length;
int[] y = clarans.getClusterLabel();
double[] sigma = new double[k];
for (int i = 0; i < n; i++) {
sigma[y[i]] += Math.sqr(distance.d(x[i], centers[y[i]]));
}
int[] ni = clarans.getClusterSize();
GaussianRadialBasis[] rbf = new GaussianRadialBasis[k];
for (int i = 0; i < k; i++) {
if (ni[i] >= 5 || sigma[i] == 0.0) {
sigma[i] = Math.sqrt(sigma[i] / ni[i]);
} else {
sigma[i] = Double.POSITIVE_INFINITY;
for (int j = 0; j < k; j++) {
if (i != j) {
double d = distance.d(centers[i], centers[j]);
if (d < sigma[i]) {
sigma[i] = d;
}
}
}
sigma[i] /= 2.0;
}
rbf[i] = new GaussianRadialBasis(r * sigma[i]);
}
return rbf;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy