com.actelion.research.calc.MatrixFunctions Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of openchemlib Show documentation
Show all versions of openchemlib Show documentation
Open Source Chemistry Library
/* * Copyright (c) 1997 - 2016 * Actelion Pharmaceuticals Ltd. * Gewerbestrasse 16 * CH-4123 Allschwil, Switzerland * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of the the copyright holder nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ package com.actelion.research.calc; import com.actelion.research.chem.descriptor.SimilarityCalculatorDoubleArray; import com.actelion.research.util.DoubleVec; import com.actelion.research.util.Formatter; import com.actelion.research.util.datamodel.*; import java.awt.*; import java.io.*; import java.util.*; import java.util.Base64.Decoder; import java.util.List; /** *
, all others are set toTitle: MatrixFunctions
*Description: Matrix operations for which a direct access to the matrix * member variables is not necessary
* * References * http://www.ini.uzh.ch/~fred/java/Matrix.java * https://introcs.cs.princeton.edu/java/95linear/Cholesky.java.html * * @author Modest von Korff * @version 1.0 * 20.11.2003 MvK: Start implementation * 10.06.2004 MvK read matrix. */ public class MatrixFunctions { private static final double TINY = 0.0000001; public static Matrix convert2Binary(Matrix A, double thresh) { int rows = A.rows(); int cols = A.cols(); Matrix B = new Matrix(rows, cols); for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { if(A.get(i,j)>thresh){ B.set(i,j,1); } } } return B; } /** * Splits the matrix row wise into two matrices. * @param A * @param row * @return */ public static Matrix [] split(Matrix A, int row) { int rows = A.rows(); int cols = A.cols(); int rowsC = rows-row; Matrix B = new Matrix(row, cols); Matrix C = new Matrix(rowsC, cols); for (int i = 0; i < row; i++) { for (int j = 0; j < cols; j++) { B.set(i, j, A.get(i,j)); } } for (int i = 0; i < rowsC; i++) { for (int j = 0; j < cols; j++) { C.set(i, j, A.get(i+row,j)); } } Matrix [] arr = new Matrix[2]; arr[0]=B; arr[1]=C; return arr; } public static Matrix [] splitCol(Matrix A, int col) { int rows = A.rows(); int cols = A.cols(); int colsC = cols-col; Matrix B = new Matrix(rows, col); Matrix C = new Matrix(rows, colsC); for (int i = 0; i < rows; i++) { for (int j = 0; j < col; j++) { B.set(i, j, A.get(i,j)); } } for (int i = 0; i < rows; i++) { for (int j = 0; j < colsC; j++) { C.set(i, j, A.get(i, j+col)); } } Matrix [] arr = new Matrix[2]; arr[0]=B; arr[1]=C; return arr; } public static boolean isEqualCol(Matrix A, int colA, Matrix B, int colB, double thresh) { boolean equal = true; int r = A.rows(); if(r != B.rows()){ throw new RuntimeException("Row number differs!"); } for (int i = 0; i < r; i++) { double abs = Math.abs(A.get(i,colA)-B.get(i,colB)); if(abs>thresh){ equal=false; break; } } return equal; } public static boolean equals(double d1, double d2){ return (Math.abs(d1-d2)1.0 0.0
). * * @param n the size of the matrix * @return the identity matrix */ public static double[][] id(int n){ double[][] A = new double [n][n]; for(int i=0; ia){ a = Math.abs(R[j][i]); double[] tempLine = R[j]; R[j] = R[i] ; R[i] = tempLine; tempLine = basis[j]; basis[j] = basis[i] ; basis[i] = tempLine; } } // Elimination of (i+i)th element of each line >i in R for(int j = i+1; j -1; i--) { double sum = 0.0; for (int j = i + 1; j < n; j++) sum += R[i][j] * invertedA[j][k]; invertedA[i][k] = (basis[i][k] - sum) / R[i][i]; } } return new Matrix(invertedA); } public static boolean isSymmetric(Matrix A) { int rows = A.rows(); for (int i = 0; i < rows; i++) { for (int j = 0; j < i; j++) { if (A.get(i,j) != A.get(j,i)) return false; } } return true; } public static boolean isSquare(Matrix A) { int rows = A.rows(); int cols = A.cols(); return (rows==cols)?true:false; } /** * * @param A * @return Cholesky factor L of psd matrix A = L L^T */ public static Matrix cholesky(Matrix A) { if (!isSquare(A)) { throw new RuntimeException("Matrix is not square"); } if (!isSymmetric(A)) { throw new RuntimeException("Matrix is not symmetric"); } int rows = A.rows(); double[][] L = new double[rows][rows]; for (int i = 0; i < rows; i++) { for (int j = 0; j <= i; j++) { double sum = 0.0; for (int k = 0; k < j; k++) { sum += L[i][k] * L[j][k]; } if (i == j) L[i][i] = Math.sqrt(A.get(i,i) - sum); else L[i][j] = 1.0 / L[j][j] * (A.get(i,j) - sum); } if (L[i][i] <= 0) { throw new RuntimeException("Matrix not positive definite"); } } return new Matrix(L); } public static Matrix calculateSimilarityMatrixRowWise(Matrix X1, Matrix X2){ SimilarityCalculatorDoubleArray similarityCalculatorDoubleArray = new SimilarityCalculatorDoubleArray(); int r1 = X1.rows(); int r2 = X2.rows(); Matrix maSim = new Matrix(r1, r2); for (int i = 0; i < r1; i++) { double [] x1 = X1.getRow(i); for (int j = 0; j < r2; j++) { double [] x2 = X2.getRow(j); double v = similarityCalculatorDoubleArray.getSimilarity(x1, x2); maSim.set(i,j,v); } } return maSim; } public static double [] calculateMaxSimilarity(Matrix XTrain, Matrix Xtest){ double [] arrSim = new double[Xtest.rows()]; int r = Xtest.rows(); for (int i = 0; i < r; i++) { double [] arrDescriptor = Xtest.getRow(i); IntegerDouble maxSim = MatrixFunctions.calculateMaxSimilarity(XTrain, arrDescriptor); arrSim[i] = maxSim.getDouble(); } return arrSim; } public static IntegerDouble[] calculateMaxSimilarity(Matrix X, double [] arr, int nMostSimilar){ List li = new ArrayList<>(); int rows = X.rows(); for (int i = 0; i < rows; i++) { double similarity = DoubleVec.getTanimotoSimilarity(X.getRow(i), arr); li.add(new IntegerDouble(i, similarity)); } Collections.sort(li, IntegerDouble.getComparatorDouble()); Collections.reverse(li); int n = Math.min(li.size(), nMostSimilar); IntegerDouble [] arrMax = new IntegerDouble[n]; for (int i = 0; i < n; i++) { arrMax[i]=li.get(i); } return arrMax; } public static IntegerDouble calculateMaxSimilarity(Matrix X, double [] arr){ int rows = X.rows(); IntegerDouble maxSim = new IntegerDouble(-1, 0); for (int i = 0; i < rows; i++) { double similarity = DoubleVec.getTanimotoSimilarity(X.getRow(i), arr); if(similarity>maxSim.getDouble()){ maxSim.setInteger(i); maxSim.setDouble(similarity); } } return maxSim; } /** * * @param maQuadratic * @return upper triangle from a quadratic matrix as an array. */ public static double [] upperTriangle(Matrix maQuadratic){ int r = maQuadratic.rows(); int n = ((r * r)-r) / 2; double [] arr= new double[n]; int cc=0; for (int i = 0; i < r; i++) { for (int j = i+1; j < r; j++) { arr[cc++]=maQuadratic.get(i,j); } } return arr; } public static Matrix appendRows(List liMatrix) { if(liMatrix==null || liMatrix.size()==0){ return null; } int cols = liMatrix.get(0).cols(); int rows = 0; for (Matrix m : liMatrix) { rows+=m.rows(); } Matrix mAll = new Matrix(rows, cols); int offsetRow=0; for (Matrix m : liMatrix) { mAll.copy(offsetRow, m); offsetRow+=m.rows(); } return mAll; } public static Matrix appendRows(Matrix ma0, Matrix ma1) { Matrix ma = new Matrix(ma0.rows() + ma1.rows(), ma0.cols()); for (int i = 0; i < ma0.rows(); i++) { for (int j = 0; j < ma0.cols(); j++) { ma.set(i,j, ma0.get(i,j)); } } int offsetRows = ma0.rows(); for (int i = 0; i < ma1.rows(); i++) { for (int j = 0; j < ma1.cols(); j++) { ma.set(i+offsetRows,j, ma1.get(i,j)); } } return ma; } public static Matrix appendCols(Matrix ma0, Matrix ma1) { if(ma0.rows() != ma1.rows()){ throw new RuntimeException("Number rows differ!"); } Matrix ma = new Matrix(ma0.rows(), ma0.cols()+ma1.cols()); for (int i = 0; i < ma0.rows(); i++) { for (int j = 0; j < ma0.cols(); j++) { ma.set(i,j, ma0.get(i,j)); } } int offsetCols = ma0.cols(); for (int i = 0; i < ma1.rows(); i++) { for (int j = 0; j < ma1.cols(); j++) { ma.set(i,j+offsetCols, ma1.get(i,j)); } } return ma; } /** * List is already used as a constructor for Matrix. So we have to place this method here. * @param li * @return */ public static Matrix create(List li){ double [][] a = new double[li.size()][]; for (int i = 0; i < li.size(); i++) { a[i]=li.get(i); } return new Matrix(a); } public static int countFieldsBiggerThan(Matrix ma, int row, double thresh) { int cc = 0; for (int i = 0; i < ma.getColDim(); i++) { if(ma.get(row,i) > thresh) { cc++; } } return cc; } public static int countFieldsBiggerThanThreshColWise(Matrix ma, int col, double thresh) { int cc = 0; for (int i = 0; i < ma.rows(); i++) { if(ma.get(i,col) > thresh) { cc++; } } return cc; } public static Matrix countFieldsBiggerThanThreshColWise(Matrix ma, double thresh) { Matrix maCounts = new Matrix(1, ma.cols()); for (int i = 0; i < ma.cols(); i++) { int cc = countFieldsBiggerThanThreshColWise(ma, i, thresh); maCounts.set(0, i, cc); } return maCounts; } /** * Calculates the inverse Tanimoto coefficient from row wise comparison of the two input matrices. * * @param ma1 * @param ma2 * @return complete distance matrix calculated between all rows from the two input matrices. */ public static Matrix getDistanceMatrixTanimotoInv(Matrix ma1, Matrix ma2) { Matrix maDist = new Matrix(ma1.getRowDim(), ma2.getRowDim()); for (int i = 0; i < ma1.getRowDim(); i++) { for (int j = 0; j < ma2.getRowDim(); j++) { double dist = getDistanceTanimotoInv(ma1, i, ma2, j); maDist.set(i,j, dist); } } return maDist; } public static Matrix getDistanceMatrix(List li) { Matrix maDist = new Matrix(li.size(), li.size()); for (int i = 0; i li1 = new ArrayList (); List li2 = new ArrayList (); for (int ii = 0; ii < ma1.getColDim(); ii++) { if((ma1.get(row1, ii) != 0) || (ma2.get(row2, ii) != 0)) { li1.add(new Double(ma1.get(row1, ii))); li2.add(new Double(ma2.get(row2, ii))); } } Matrix maRow1 = new Matrix(true, li1); Matrix maRow2 = new Matrix(true, li2); double dAtB = maRow1.multiply(0, maRow2, 0); double dAtA = maRow1.multiply(0, maRow1, 0); double dBtB = maRow2.multiply(0, maRow2, 0); dist = dAtB / (dAtA + dBtB - dAtB); return 1-dist; } /** * A square-shaped neighborhood that can be used to define a set of cells surrounding a given point. * * @param p * @param ma * @return */ public static List getMooreNeighborhood(Point p, Matrix ma) { List li = new ArrayList (); int startX = Math.max(0, p.x - 1); int endX = Math.min(ma.cols(), p.x+2); int startY = Math.max(0, p.y - 1); int endY = Math.min(ma.rows(), p.y+2); for (int i = startY; i < endY; i++) { for (int j = startX; j < endX; j++) { if(i!=p.y || j!=p.x) { if(ma.get(i,j)>0) { li.add(new Point(j,i)); } } } } return li; } public static List getMooreNeighborhood(Point p, int r, Matrix ma) { List li = new ArrayList (); int startX = Math.max(0, p.x - r); int endX = Math.min(ma.cols(), p.x+r+1); int startY = Math.max(0, p.y - r); int endY = Math.min(ma.rows(), p.y+r+1); for (int i = startY; i < endY; i++) { for (int j = startX; j < endX; j++) { if(i!=p.y || j!=p.x) { if(ma.get(i,j)>0) { li.add(new Point(j,i)); } } } } return li; } /** * * @param ma * Matrix with ma.rows and 1 col. Containing the min value from * each row. * @return */ public static Matrix getRowMinUnique(Matrix ma) { Matrix maTmp = new Matrix(ma); Matrix maMin = new Matrix(maTmp.getRowDim(), 1); for (int i = 0; i < maTmp.getRowDim(); i++) { ScorePoint td = maTmp.getMinPos(); maMin.set(td.y,0,td.getScore()); maTmp.setRow(td.y, Double.MAX_VALUE); maTmp.setCol(td.x, Double.MAX_VALUE); } return maMin; } /** * * @param ma * @return list with indices Point(row,col) for values>0. */ public static List getPoints(Matrix ma){ List li = new ArrayList (); for (int i = 0; i < ma.rows(); i++) { for (int j = 0; j < ma.cols(); j++) { if(ma.get(i, j)>0){ li.add(new Point(j,i)); } } } return li; } public static List getIndicesUniqueMaxRowWise(Matrix maIn){ List li = new ArrayList (); Matrix ma = new Matrix(maIn); for (int i = 0; i < ma.rows(); i++) { Point p = ma.getMaxIndex(); li.add(p); int row = p.y; for (int j = 0; j < ma.cols(); j++) { ma.set(row, j, -Double.MAX_VALUE); } } return li; } public static List getIndicesUniqueMaxColumnWise(Matrix maIn){ List li = new ArrayList (); Matrix ma = new Matrix(maIn); for (int col = 0; col < ma.cols(); col++) { Point p = ma.getMaxIndex(); li.add(p); int colMax = p.x; for (int row = 0; row < ma.rows(); row++) { ma.set(row, colMax, -Double.MAX_VALUE); } } return li; } public static Matrix getScaledByFactor(Matrix ma, double fac) { int cols = (int)(ma.cols()*fac+0.5); int rows = (int)(ma.rows()*fac+0.5); Matrix maSc = new Matrix(rows, cols); for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { double v = ma.get((int)(i/fac), (int)(j/fac)); maSc.set(i,j,v); } } return maSc; } /** * Centers and divides by standard deviation. * @param ma * @return */ public static Matrix getScaled(Matrix ma) { Matrix maCentered = ma.getCenteredMatrix(); Matrix maSD = ma.getStandardDeviationCols(); int rows = ma.rows(); int cols = ma.cols(); Matrix maScale = new Matrix(rows, cols); for (int i = 0; i < cols; i++) { double sdv = maSD.get(0,i); for (int j = 0; j < rows; j++) { maScale.set(j,i, maCentered.get(j,i) / sdv); } } return maScale; } /** * 03.10.04 MvK * @param ma matrix with objects in rows * @param k number of desired cluster * @return Matrix of cluster centers, k rows and cols equal ma.cols. */ public static Matrix getKMeanClusters(Matrix ma, int k) { Matrix maCenters = new Matrix(k,ma.getColDim()); int iMaxIterations = 100; // Array with indices // The index specified the corresponding mean cluster int[] arrIndex = new int[ma.getRowDim()]; // Generate the first mean clusters by random Random rnd = new Random(); for (int ii = 0; ii < k; ii++) { int rndIndex = rnd.nextInt(ma.getRowDim()); maCenters.assignRow(ii, ma.getRow(rndIndex)); } // For test // maCenters.assignRow(0, ma.getRow(0)); // maCenters.assignRow(1, ma.getRow(6)); // maCenters.assignRow(2, ma.getRow(14)); maCenters = maCenters.getSorted(); Matrix maCenters2 = new Matrix(maCenters); int counter = 0; do{ maCenters = new Matrix(maCenters2); for (int ii = 0; ii < arrIndex.length; ii++) arrIndex[ii] = -1; // Find the next mean cluster for each object in the matrix. // Each col represents a mean cluster, each row represents an // object. Matrix maDist = getDistTanimotoInvReduced(ma, maCenters); for (int ii = 0; ii < maDist.getRowDim(); ii++) { int index = maDist.getMinRowIndexRND(ii); arrIndex[ii] = index; } // System.out.println("maDist\n" + maDist); // Calculate the new mean clusters. double[] arrNumObjects = new double[k]; maCenters2.set(0.0); for (int ii = 0; ii < ma.getRowDim(); ii++) { int index = arrIndex[ii]; maCenters2.add2Row(index, ma, ii); arrNumObjects[index]++; } // boolean bEmptyCenter = false; for (int ii = 0; ii < maCenters2.getRowDim(); ii++) { if(arrNumObjects[ii] > 0) maCenters2.devideRow(ii, arrNumObjects[ii]); else { // maCenters2.setRow(ii, -1); maCenters2.assignRow(ii, maCenters.getRow(ii)); // bEmptyCenter = true; } } /* if(bEmptyCenter) { String str = "Break because of empty center.\n"; System.err.print(str); break; } */ maCenters2 = maCenters2.getSorted(); // System.out.println("maCenters2\n" + maCenters2); counter++; if(counter > iMaxIterations) { System.err.print("Max num iterations reached.\n"); // (new Exception()).printStackTrace(); break; } } while(!maCenters.equal(maCenters2)); System.out.println("Number iterations: " + counter); return maCenters; } public static final double getCorrPearson(Matrix A, Matrix B) { final double [] a = A.toArray(); final double [] aCent = ArrayUtilsCalc.getCentered(a); final double [] aCentNorm = ArrayUtilsCalc.getNormalized(aCent); final double [] b = B.toArray(); final double [] bCent = ArrayUtilsCalc.getCentered(b); final double [] bCentNorm = ArrayUtilsCalc.getNormalized(bCent); final double val = ArrayUtilsCalc.getCorrPearsonStandardized(aCentNorm,bCentNorm); return val; } public static final double getCorrSpearman(Matrix A, Matrix B) { final double [] a = A.toArray(); final double [] b = B.toArray(); DoubleArray daA = new DoubleArray(a); DoubleArray daB = new DoubleArray(b); CorrelationCalculator correlationCalculator = new CorrelationCalculator(); double c = correlationCalculator.calculateCorrelation(daA, daB, CorrelationCalculator.TYPE_SPEARMAN); return c; } public static double getCorrPearson(Matrix A, int col1, int col2) { double val = 0; Matrix Anorm = A.getCol(col1); Anorm = Anorm.getCenteredMatrix(); Anorm = Anorm.getNormalizedMatrix(); Matrix Bnorm = A.getCol(col2); Bnorm = Bnorm.getCenteredMatrix(); Bnorm = Bnorm.getNormalizedMatrix(); val = MatrixFunctions.getCorrPearsonStandardized(Anorm,Bnorm); return val; } private static double getCorrPearsonStandardized(Matrix A, Matrix B) { double val = 0; double covXY = getCovarianceCentered(A,B); double varA = A.getVarianceCentered(); double varB = B.getVarianceCentered(); val = covXY / (varA * varB); return val; } public static double getCovariance(Matrix A, Matrix B) { double covXY = 0; double Amean = A.getMean(); double Bmean = B.getMean(); double sum = 0; for (int ii = 0; ii < A.getRowDim(); ii++) { for (int jj = 0; jj < A.getColDim(); jj++) { sum += (A.get(ii,jj) - Amean) * (B.get(ii,jj) - Bmean); } } covXY = sum / (A.getNumElements() - 1); return covXY; } public static double getCovarianceCentered(Matrix A, Matrix B) { double covXY = 0; double sum = 0; final int cols = A.cols(); final int rows = A.rows(); for (int i = 0; i < rows; i++) { final double [] a = A.getRow(i); final double [] b = B.getRow(i); for (int j = 0; j < cols; j++) { sum += (a[j] * b[j]); } } covXY = sum / (A.getNumElements() - 1); return covXY; } /** * generates a matrix with double values between 0 (inclusive) and 1 * (exclusive). * @param rows rows * @param cols columns * @return matrix */ public static Matrix getRandomMatrix(int rows, int cols) { Matrix ma = new Matrix(rows, cols); Random rnd = new Random(); for (int i = 0; i < ma.getRowDim(); i++) { for (int j = 0; j < ma.getColDim(); j++) { ma.set(i,j, rnd.nextDouble()); } } return ma; } /** * * @param n * @param mean * @param sd * @return random one column matrix with given mean and standard deviation. */ public static Matrix rnorm(int n, double mean, double sd) { Matrix x = new Matrix(n, 1); Random random = new Random(); for (int i = 0; i < n; i++) { double v = random.nextGaussian(); v = v*sd+mean; x.set(i,0,v); } return x; } /** * * @param X * @return bit wise. */ public static IntVec getNonZeroCols(Matrix X) { int s = X.cols() / Integer.SIZE; if(X.cols() % Integer.SIZE>0){ s++; } IntVec ivMask = new IntVec(s); int r = X.rows(); int c = X.cols(); for (int i = 0; i < c; i++) { boolean zero=true; for (int j = 0; j < r; j++) { if(Math.abs(X.get(j,i)) > Matrix.TINY16){ zero=false; break; } } if(!zero) { ivMask.setBit(i); } } return ivMask; } /** * Converts a vector of vectors into doubles, each vector results in a row in * the matrix. All vectors have to be of equal length or a runtime exception * is thrown. * @param vecvec vector on vectors, has to be converted into doubles * @param ma resulting matrix */ public static void vecvec2Matrix(Vector > vecvec, Matrix ma) { Iterator > it = vecvec.iterator(); int iLenCol0 = ((Vector ) it.next()).size(); for( ; it.hasNext(); ) { int iLen = ((Vector ) it.next()).size(); if(iLen != iLenCol0) { throw new RuntimeException("All vectors must have the same length."); } } int iRows = vecvec.size(); ma.resize(iRows, iLenCol0); it = vecvec.iterator(); int iRow = 0; for( ; it.hasNext(); ) { Vector vec = new Vector (((Vector ) it.next())); for(int ii = 0; ii < vec.size(); ii++) { ma.set(iRow, ii, ((Double) vec.get(ii)).doubleValue()); } iRow++; } } public static Matrix readCSV(File fi) throws IOException { List li = new ArrayList (); BufferedReader br = new BufferedReader(new FileReader(fi)); int cols = -1; String l = null; while ((l=br.readLine())!=null){ String [] arr = l.split(","); if(cols == -1) { cols=arr.length; } else { if(arr.length!=cols){ throw new RuntimeException("Number of columns differ!"); } } li.add(arr); } Matrix ma = new Matrix(li.size(), cols); for (int i = 0; i < li.size(); i++) { String [] arr = li.get(i); for (int j = 0; j < arr.length; j++) { double v = Double.parseDouble(arr[j]); ma.set(i,j,v); } } return ma; } public static Matrix read(File fiMatrix) throws IOException { return read(fiMatrix, false); } public static Matrix read(File fiMatrix, boolean skipFirstLine) throws IOException { FileInputStream fis = new FileInputStream(fiMatrix); Matrix A = read(fis, skipFirstLine); fis.close(); return A; } public static Matrix read(String s) throws IOException { InputStream is = new ByteArrayInputStream(s.getBytes()); Matrix A = read(is, false); is.close(); return A; } public static Matrix readAsLineBase64Encoded(String s) throws IOException { Decoder decoder = Base64.getDecoder(); byte [] b = decoder.decode(s); InputStream is = new ByteArrayInputStream(b); Matrix A = read(is, false); is.close(); return A; } public static Matrix read(InputStream is) { return read(is, false); } public static Matrix read(InputStream is, boolean skipFirstLine) { List li = new ArrayList (); Scanner scannerLine = new Scanner (is); if(skipFirstLine){ scannerLine.nextLine(); } int rows = 0; int cols = 0; while(scannerLine.hasNextLine()) { ++rows; Scanner scannerValue = new Scanner(scannerLine.nextLine()); DoubleArray arr = null; if(cols==0) { arr = new DoubleArray(); while(scannerValue.hasNextDouble()) { double d = scannerValue.nextDouble(); arr.add(d); cols++; } } else { arr = new DoubleArray(cols); while(scannerValue.hasNextDouble()) { double d = scannerValue.nextDouble(); arr.add(d); } } li.add(arr); } scannerLine.close(); double[][] a = new double[rows][cols]; for (int i = 0; i < li.size(); i++) { DoubleArray arr = li.get(i); for (int j = 0; j < cols; j++) { a[i][j] = arr.get(j); } } return new Matrix(a); } public static void writeQuadraticSymmetricMatrixPairwise(Matrix ma, File fiTxt) throws IOException { if(ma.rows() != ma.cols()){ throw new RuntimeException("Not a quadratic matrix"); } BufferedWriter bw = new BufferedWriter(new FileWriter(fiTxt)); int n = ma.rows(); int rows2Write = ((n * n) - n)/2; int cc=0; for (int i = 0; i < ma.rows(); i++) { for (int j = i+1; j < ma.cols(); j++) { double v0 = ma.get(i,j); double v1 = ma.get(j,i); if(v0!=v1){ throw new RuntimeException("Matrix not symmetric"); } StringBuilder sb = new StringBuilder(); sb.append(i); sb.append("\t"); sb.append(j); sb.append("\t"); sb.append(v0); if(cc < rows2Write-1){ sb.append("\n"); } cc++; bw.write(sb.toString()); } } bw.close(); } public static void columnIntoDoubleArray(Matrix A, int col, DoubleArray da) { da.clear(); int r = A.rows(); for (int i = 0; i < r; i++) { da.add(A.get(i, col)); } } public static List > createIdentifiedObject(Matrix A) { int rows = A.rows(); List > liIdentifiedObject = new ArrayList<>(rows); for (int i = 0; i < rows; i++) { double [] a = A.getRow(i); IdentifiedObject io = new IdentifiedObject<>(a, i); liIdentifiedObject.add(io); } return liIdentifiedObject; } }
© 2015 - 2025 Weber Informatics LLC | Privacy Policy