All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.actelion.research.calc.MatrixTests Maven / Gradle / Ivy

There is a newer version: 2024.12.1
Show newest version
/*
 * Copyright (c) 1997 - 2016
 * Actelion Pharmaceuticals Ltd.
 * Gewerbestrasse 16
 * CH-4123 Allschwil, Switzerland
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 * 3. Neither the name of the the copyright holder nor the
 *    names of its contributors may be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

package com.actelion.research.calc;

import com.actelion.research.calc.regression.linear.pls.SimPLS;
import com.actelion.research.util.IO;
import com.actelion.research.util.datamodel.ModelXY;

import java.util.Date;
import java.util.Random;

/**
 * MatrixData
 * @author Modest von Korff
 * @version 1.0
 * Sep 13, 2013 MvK Start implementation
 */
public class MatrixTests {
	
	/**
	 * Creates a multivariate test dataset
	 * The regression factor factor is the col number, starting with 1.
	 * @param rows
	 * @param cols
	 * @return
	 */
    public static ModelXY getMultivariate(int rows, int cols){
    	
    	ModelXY modelXY = new ModelXY();
    	
    	Matrix X = new Matrix(rows, cols);
    	Matrix Y = new Matrix(rows, 1);
    	
    	double max = 10;
    	
    	Random rnd = new Random();
    	
    	for (int i = 0; i < cols; i++) {
    		   		
    		for (int j = 0; j < rows; j++) {
				
    			double v = rnd.nextDouble() * max;
    			
    			X.set(j,i,v);
    			
			}
    		
		}
    	
    	for (int i = 0; i < rows; i++) {
    		
    		double y = 0;
    		
    		for (int j = 0; j < cols; j++) {
    			double v = X.get(i, j);
    			y += v*(j+1);
			}
    		Y.set(i, 0, y);
		}
    	
    	modelXY.X = X;
    	
    	modelXY.Y = Y;
    	    	
    	return modelXY;
    }

    public static Matrix test00() {
        double [][] A = {{1.001},
                         {1.002},
                         {1.003},
                         {1.004}};
        Matrix ma = new Matrix(A);
        return ma;
    }

    public static Matrix test01() {
        double [][] A = {{1.004},
                         {1.003},
                         {1.002},
                         {1.001}};
        Matrix ma = new Matrix(A);
        return ma;
    }

    public static Matrix test02() {
        double [][] A = {{1,3,4},
                         {2,3,4},
                         {3,3,2},
                         {4,3,1}};
        Matrix ma = new Matrix(A);
        return ma;
    }

    public static Matrix test03() {

        double [][] A = {{1,0,0,0},
                         {1,0,0,0},
                         {0,1,0,0},
                         {0,1,0,0},
                         {0,0,1,0},
                         {0,0,1,0},
                         {0,0,0,1},
                         {0,0,0,1}};


        Matrix ma = new Matrix(A);

        return ma;
    }

    public static Matrix test04() {

        double [][] A = {{1,1,1,1},
                         {1,1,1,1},
                         {2,20,2,2},
                         {2,20,2,2},
                         {3,30,3,3},
                         {3,30,3,3},
                         {4,40,40,4},
                         {4,40,40,4}};


        Matrix ma = new Matrix(A);

        return ma;
    }

    public static Matrix test05() {
        double [][] A = {{1,1,1,1},
                         {1,2,1,1},
                         {1,3,1,1},
                         {1,4,1,1},
                         {0,5,1,1},
                         {0,6,1,1},
                         {0,7,1,1},
                         {0,8,1,1}};
        Matrix ma = new Matrix(A);
        return ma;
    }

    public static Matrix test06() {
        double [][] A = {{1,0},
                         {1,0},
                         {1,0},
                         {1,0},
                         {0,1},
                         {0,1},
                         {0,1},
                         {0,1}};
        Matrix ma = new Matrix(A);
        return ma;
    }
    public static Matrix test07() {
        double [][] A = {{1,1,0,0},
                         {1,1,0,0},
                         {1,1,0,0},
                         {1,1,0,0},
                         {0,0,1,1},
                         {0,0,1,1},
                         {0,0,1,1},
                         {0,0,1,1}};
        Matrix ma = new Matrix(A);
        return ma;
    }

    public static Matrix test08() {
            double [][] A = {{1,1,1,0},
                             {1,0,0,0},
                             {1,1,0,0},
                             {1,1,0,0},
                             {0,1,1,1},
                             {0,0,1,0},
                             {0,0,1,1},
                             {0,0,1,1}};

        Matrix ma = new Matrix(A);
        return ma;
    }

    public static Matrix testMatrix02() {

        double [][] A = {{16,  2,  3, 13},
                         { 5, 11, 10,  8},
                         { 9,  7,  6, 12},
                         { 4, 14, 15,  1}};

        Matrix ma = new Matrix(A);
        return ma;
    }
    /**
     * Validation data for PLS from Abdi, PLS, Encyclopedia of Social Sciences
     * Reasearch Methods (2003).
     * @return Matrix
     */
    public static Matrix testMatrix_YWine() {

        double [][] A = {{ 14,  7,  8},
                         { 10,  7,  6},
                         { 8,  5,  5},
                         { 2,  4,  7},
                         { 6,  2,  4}};

        Matrix ma = new Matrix(A);

        return ma;
    }

    public static Matrix testMatrix_XWine() {

        double [][] A = {{ 7,  7, 13, 7},
                         { 4,  3, 14, 7},
                         { 10,  5, 12, 5},
                         { 16,  7, 11, 3},
                         { 13,  3, 10, 3}};

        Matrix ma = new Matrix(A);

        return ma;
    }

    public static Matrix testMatrixHenrion01() {

        double [][] A = {{ 4, 0},
                         { 0, 8},
                         { 4, 4},
                         { 2, 0},
                         { 0, 8}};

        Matrix ma = new Matrix(A);

        return ma;
    }

    /**
     * http://www.itl.nist.gov/div898/strd/lls/data/Longley.shtml
     * Y Matrix
     * @return Y matrix
     */
    public static Matrix testLonglyY() {

        double [][] A = {{	60323	},
            {	61122	},
            {	60171	},
            {	61187	},
            {	63221	},
            {	63639	},
            {	64989	},
            {	63761	},
            {	66019	},
            {	67857	},
            {	68169	},
            {	66513	},
            {	68655	},
            {	69564	},
            {	69331	},
            {	70551	}};

        Matrix ma = new Matrix(A);
        return ma;
    }

    /**
     * http://itl.nist.gov/div898/strd/lls/data/LINKS/DATA/Longley.dat
     * @return
     */
    public static Matrix testLonglyX() {

        double[][] A = {
            {83, 234289, 2356, 1590, 107608, 1947},
            {88.5, 259426, 2325, 1456, 108632, 1948},
            {88.2, 258054, 3682, 1616, 109773, 1949},
            {89.5, 284599, 3351, 1650, 110929, 1950},
            {96.2, 328975, 2099, 3099, 112075, 1951},
            {98.1, 346999, 1932, 3594, 113270, 1952},
            {99, 365385, 1870, 3547, 115094, 1953},
            {100, 363112, 3578, 3350, 116219, 1954},
            {101.2, 397469, 2904, 3048, 117388, 1955},
            {104.6, 419180, 2822, 2857, 118734, 1956},
            {108.4, 442769, 2936, 2798, 120445, 1957},
            {110.8, 444546, 4681, 2637, 121950, 1958},
            {112.6, 482704, 3813, 2552, 123366, 1959},
            {114.2, 502601, 3931, 2514, 125368, 1960},
            {115.7, 518173, 4806, 2572, 127852, 1961},
            {116.9, 554894, 4007, 2827, 130081, 1962},
        };


        Matrix ma = new Matrix(A);
        return ma;
    }

    public static Matrix testDescriptor01X() {

        double[][] A = {
            {0, 0, 0, 1, 1, 1},
            {0, 0, 0, 1, 1, 1},
            {0, 0, 0, 1, 1, 1},
            {0, 0, 0, 1, 1, 1},
            {0, 0, 0, 1, 1, 1},
            {0, 0, 0, 1, 1, 1},
            {0, 0, 0, 1, 1, 1},
            {0, 0, 0, 1, 1, 1},
            {0, 0, 0, 1, 1, 1},
            {0, 0, 0, 1, 1, 1},
            {1, 1, 1, 0, 0, 0},
            {1, 1, 1, 0, 0, 0},
            {1, 1, 1, 0, 0, 0},
            {1, 1, 1, 0, 0, 0},
            {1, 1, 1, 0, 0, 0},
            {1, 1, 1, 0, 0, 0},
            {1, 1, 1, 0, 0, 0},
            {1, 1, 1, 0, 0, 0},
            {1, 1, 1, 0, 0, 0},
            {1, 1, 1, 0, 0, 0},
            {1, 1, 1, 0, 0, 0},
        };


        Matrix ma = new Matrix(A);
        return ma;
    }

    public static Matrix testDescriptor01Y() {

        double[][] A = {
            {1,0},
            {1,0},
            {1,0},
            {1,0},
            {1,0},
            {1,0},
            {1,0},
            {1,0},
            {1,0},
            {1,0},
            {0,1},
            {0,1},
            {0,1},
            {0,1},
            {0,1},
            {0,1},
            {0,1},
            {0,1},
            {0,1},
            {0,1},
            {0,1},
        };


        Matrix ma = new Matrix(A);
        return ma;
    }

    public static Matrix testSimple1Y() {

        double [][] A = {{55},{56},{57},{58},{59},{60},{61},{62}};

        Matrix ma = new Matrix(A);
        return ma;
    }
    
    public static Matrix testSimple1X(int cols) {
    	
        double [][] a = {{55},
        				 {56},
        				 {57},
        				 {58},
        				 {59},
        				 {60},
        				 {61},
        				 {62}};
        
        
        Matrix Xrnd = Matrix.getRND(a.length, cols);
        
        for (int i = 0; i < a.length; i++) {
        	Xrnd.set(i,0, a[i][0]);
		}
       
        return Xrnd;
    }

    public static Matrix testSimple2X(int cols) {
    	
        double [][] a = {{55,0},
        				 {56,0},
        				 {57,0},
        				 {58,0},
        				 {0,59},
        				 {0,60},
        				 {0,61},
        				 {0,62}};
        
        
        Matrix Xrnd = Matrix.getRND(a.length, cols);
        
        for (int i = 0; i < a.length; i++) {
        	Xrnd.set(i,0, a[i][0]);
        	Xrnd.set(i,1, a[i][1]);
		}
       
        return Xrnd;
    }
    /**
     * Checks for the correctness of the Eigenvector and Eigenvalues calculation.
     * The test relies on the X V = V E equation (Henrion^2 (1995),p219).
     * X is the symmetric original matrix. V is the diagonal matrix of the
     * eigenvalues and E is the matrix of the corresponding eigenvectors.
     * @return true if the check is ok.
     */
    public static boolean checkForEigenvaluesAndEigenvectors() {
        boolean bCheckOK = true;

        Matrix A = testMatrix02();
        Matrix AtA = A.multiply(true,false,A);

        Matrix d = new Matrix(1,1);
        Matrix e = new Matrix(1,1);

        Matrix EV = new Matrix(AtA.getArray());
        
        Matrix.getEigenvector(EV, EV.getColDim(), d, e);

        Matrix D = d.diagonalize();

        Matrix C = EV.multiply(false,false,D);
        Matrix F = AtA.multiply(false,false,EV);

        bCheckOK = C.equal(F, Matrix.TINY);

        // System.out.println(C);
        // System.out.println(F);

        return bCheckOK;
    }

    static protected Matrix pls(Matrix X, Matrix Y,
                                           String sPatternHeaderX,
                                           int iNumPrincipalComponents,
                                           boolean bLogarithm,
                                           String sFileDataSummaryOut) {
        Matrix R = null;


        if(bLogarithm)
            X = X.log();
        // System.out.println(X.toString(4));


        // Perform PLS
        SimPLS pls = new SimPLS();
        Matrix Xc = X.getCenteredMatrix();
        Matrix Yc = Y.getCenteredMatrix();

        String sSummary = "Xc(standardized):\r\n" + Xc + "\r\n\r\n";
        sSummary += "Yc:\r\n" + Yc + "\r\n\r\n";
        IO.write(sFileDataSummaryOut, sSummary, true);
        pls.simPlsSave(Xc,Yc,iNumPrincipalComponents);
        Matrix P = pls.getP();
        R = pls.getR();
        Matrix U = pls.getU();
        Matrix V = pls.getV();
        Matrix Q = pls.getQ();
        Matrix T = pls.getT();

        // Result matrices to summary file
        sSummary = "Matrices from the PLS decomposition of the Training data.\r\n\r\n";
        sSummary += "P:\r\n" + P + "\r\n\r\n";
        sSummary += "R:\r\n" + R + "\r\n\r\n";
        sSummary += "U:\r\n" + U + "\r\n\r\n";
        sSummary += "V:\r\n" + V + "\r\n\r\n";
        sSummary += "Q:\r\n" + Q + "\r\n\r\n";
        sSummary += "T:\r\n" + T + "\r\n\r\n";
        IO.write(sFileDataSummaryOut, sSummary, true);

        return R;
    }

    
    @SuppressWarnings("unused")
	public static void testMain01() {

        int repeat = 10;
        int rowsA = 1000;
        int colsA = 1000;
        int colsB = 100;

        int n = 10;

        Matrix X = MatrixFunctions.getRandomMatrix(rowsA,colsA);
        Matrix Y = MatrixFunctions.getRandomMatrix(colsA,colsB);

        Matrix Eleft = new Matrix(X);


        Matrix Eright = new Matrix();
        Matrix D = new Matrix();
        Date dateStart = new Date();
        Matrix.getEigenvector(Eleft, n, D, Eright);
        Date dateEnd = new Date();
        long delta = dateEnd.getTime() - dateStart.getTime();
        System.out.println("Time: " + delta);
        // System.out.println("D: " + D.toString());




//        Date dateStart = new Date();
//        Matrix C = null;
//        for (int ii = 0; ii < repeat; ii++) {
//            C = X.multiply(false, false, Y);
//        }
//        Date dateEnd = new Date();
//        long delta = dateEnd.getTime() - dateStart.getTime();
//        System.out.println("Time: " + delta);
//        System.out.println("size: " + (C.getColDim() * C.getRowDim()));
//
//        dateStart = new Date();
//        for (int ii = 0; ii < repeat; ii++) {
//            C = X.multiplyBig(false, false, Y);
//        }
//        
//        dateEnd = new Date();
//        delta = dateEnd.getTime() - dateStart.getTime();
//        System.out.println("Time: " + delta);
//        System.out.println("size: " + (C.getColDim() * C.getRowDim()));


    }

    public static void testMainHenrion() {
        Matrix X = testMatrixHenrion01();
        Matrix Xc = X.getCenteredMatrix();
        System.out.println(Xc);
        Matrix Xstand = X.getStandardDeviationCols();
        System.out.println(Xstand);

        Matrix Xs = X.getStandardized();
        System.out.println(Xs);

        // checkForEigenvaluesAndEigenvectors();

    }

    

}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy