com.actelion.research.calc.SimilarityMulticore Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of openchemlib Show documentation
Show all versions of openchemlib Show documentation
Open Source Chemistry Library
package com.actelion.research.calc;
import com.actelion.research.chem.descriptor.ISimilarityCalculator;
import com.actelion.research.util.Pipeline;
import com.actelion.research.util.datamodel.IIdentifiedObject;
import com.actelion.research.util.datamodel.IdentifiedObject;
import com.actelion.research.util.datamodel.ScorePoint;
import java.awt.*;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.atomic.AtomicLong;
/**
*
* SimilarityMulticore
* T is the descriptor object class
* @author Modest von Korff
* @version 1.0
* 10 Dec 2010 MvK: Start implementation
* Nov 2011 MvK: Generalization via interface definitions.
* 24 Apr 2013 MvK: Some improvements on the thread handling.
* 04 Dec 2014 MvK: Some improvements on the thread handling.
* 09.05.2016 MvK: Calculates now the similarity matrix.
* 26.04.2017 MvK: Using ExecutorServices now.
* 26.11.2018 code changed. Similarity for identically labeled descriptors will now be calculated.
*/
public class SimilarityMulticore {
private static final int MAX_KERNELS = 80;
// private static boolean VERBOSE = false;
// private static final double DEFAULT_SIMILARITY = 1.0;
private static final double DEFAULT_MINIMUM_SIMILARITY = 0.01;
private static final long SLEEP_SHORT = 10;
private static final long SLEEP_ULTRA_SHORT = 1;
private ISimilarityCalculator similarityCalculator;
private List> liDescriptor1;
private List> liDescriptor2;
private int kernels;
private AtomicLong sleep;
private Pipeline queueIndices;
private ConcurrentLinkedQueue queueScore;
private List liRun;
private int similarities2Calculate;
private AtomicLong calculationsPerSecond;
private Matrix maSimilarity;
private boolean verbose;
/**
*
* @param similarityCalculator
*/
public SimilarityMulticore(ISimilarityCalculator similarityCalculator) {
this(similarityCalculator, Math.min(Runtime.getRuntime().availableProcessors()-1, MAX_KERNELS));
}
public SimilarityMulticore(ISimilarityCalculator similarityCalculator, int kernels) {
this.similarityCalculator = similarityCalculator;
this.kernels = kernels;
queueIndices = new Pipeline();
queueScore = new ConcurrentLinkedQueue();
sleep = new AtomicLong();
calculationsPerSecond = new AtomicLong();
verbose = false;
}
public void setVerbose() {
this.verbose = true;
}
public void run(IdentifiedObject descriptor, List> liDescriptor2) {
List> liOneSample = new ArrayList>();
liOneSample.add(descriptor);
run(liOneSample, liDescriptor2);
}
public void run(List> liDescriptor) {
run(liDescriptor, liDescriptor, true);
}
public void run(List> liDescriptor1, List> liDescriptor2) {
run(liDescriptor1, liDescriptor2, false);
}
/**
*
* @param liDescriptor1 list with descriptors,
* @param liDescriptor2 list with descriptors,
* liDescriptor1 will be compared with liDescriptor2 via ISimilarityCalculator given in constructor.
* RFesulting is a similarity matrix with rows = liDescriptor1.size() and cols = liDescriptor2.size()
*/
private void run(List> liDescriptor1, List> liDescriptor2, boolean singleList) {
calculationsPerSecond.set(-1);
long t1 = new Date().getTime();
sleep.set(SLEEP_ULTRA_SHORT);
if(verbose) {
System.out.println("SimilarityMulticore start.");
System.out.println("SimilarityMulticore kernels\t" + kernels);
}
this.liDescriptor1 = liDescriptor1;
this.liDescriptor2 = liDescriptor2;
if(verbose){
System.out.println("liDescriptor1 " + liDescriptor1.size() + " liDescriptor2 " + liDescriptor2.size() + ".");
}
queueScore.clear();
maSimilarity = new Matrix(liDescriptor1.size(), liDescriptor2.size());
if(singleList){
fillCalculationIndexQueueSingleList();
} else {
fillCalculationIndexQueueTwoLists();
}
liRun = new ArrayList();
ExecutorService executorService = Executors.newFixedThreadPool(kernels);
for (int i = 0; i < kernels; i++) {
RunSimilarityCalc rsc = new RunSimilarityCalc(i, similarityCalculator, queueIndices, liDescriptor1, liDescriptor2, maSimilarity, singleList, queueScore);
liRun.add(rsc);
executorService.execute(rsc);
}
executorService.shutdown();
while(!executorService.isTerminated()){
try {Thread.sleep(1);} catch (InterruptedException e) {}
}
long t2 = new Date().getTime();
long sec = (t2-t1) / 1000;
if(sec!=0){
calculationsPerSecond.set(getCalculatedSimilarityValues() / sec);
}
if(verbose){
System.out.println("Similarity calculations " + getCalculatedSimilarityValues());
System.out.println("Similarity calculations per second " + calculationsPerSecond.get());
int sumCalc = 0;
for (int i = 0; i < liRun.size(); i++) {
RunSimilarityCalc rsc = liRun.get(i);
sumCalc += rsc.getNSimilarityCalculations();
System.out.println("Thread " + rsc.getIndexThread() + " calcs " + rsc.getNSimilarityCalculations());
}
System.out.println("Sum calcs " + sumCalc + ".");
}
sleep.set(SLEEP_SHORT);
}
public long getCalculationsPerSecond(){
return calculationsPerSecond.get();
}
public int getSimilarities2Calculate(){
return similarities2Calculate;
}
public long getCalculatedSimilarityValues(){
long ccCalc = 0;
for (RunSimilarityCalc rsc : liRun) {
ccCalc += rsc.getNSimilarityCalculations();
}
return ccCalc;
}
private boolean isFinished() {
if(!queueIndices.isAllDataIn()){
return false;
}
if(!queueIndices.isEmpty()){
return false;
}
boolean finished = true;
if(queueScore.size() != similarities2Calculate){
finished=false;
}
return finished;
}
public boolean hasMoreResults() {
return !queueScore.isEmpty();
}
/**
*
* @return similarity score with the id numbers of the compared input objects.
* The x value is the identifier from the object from liDescriptor1 and the y value from liDescriptor2.
*/
public ScorePoint getNextResult() {
return queueScore.poll();
}
private void fillCalculationIndexQueueTwoLists(){
queueIndices.setAllDataIn(false);
similarities2Calculate = liDescriptor1.size() * liDescriptor2.size();
for (int i = 0; i < liDescriptor1.size(); i++) {
for (int j = 0; j < liDescriptor2.size(); j++) {
Point p = new Point(i,j);
queueIndices.addData(p);
}
}
queueIndices.setAllDataIn(true);
if(verbose){
System.out.println("SimilarityMulticore sim to calc " + similarities2Calculate + ".");
}
}
private void fillCalculationIndexQueueSingleList(){
queueIndices.setAllDataIn(false);
similarities2Calculate = ((liDescriptor1.size() * liDescriptor1.size()) - liDescriptor1.size()) / 2;
for (int i = 0; i < liDescriptor1.size(); i++) {
for (int j = i; j < liDescriptor1.size(); j++) {
Point p = new Point(i,j);
queueIndices.addData(p);
}
}
queueIndices.setAllDataIn(true);
if(verbose){
System.out.println("SimilarityMulticore sim to calc " + similarities2Calculate + ".");
}
}
public Matrix getSimilarityMatrix() {
return maSimilarity;
}
private static class RunSimilarityCalc implements Runnable {
private ISimilarityCalculator iSimilarityCalculator;
private Pipeline queueIndices;
private List> liDescriptor1;
private List> liDescriptor2;
private Matrix maSimilarity;
private boolean singleList;
private ConcurrentLinkedQueue queueScore;
private AtomicLong calculatedSimilarities;
private int indexThread;
public RunSimilarityCalc(int indexThread,
ISimilarityCalculator similarityCalculator,
Pipeline queueIndices,
List> liDescriptor1,
List> liDescriptor2,
Matrix maSimilarity,
boolean singleList,
ConcurrentLinkedQueue queueScore) {
this.indexThread = indexThread;
this.iSimilarityCalculator = similarityCalculator.getThreadSafeCopy();
this.queueIndices = queueIndices;
this.liDescriptor1 = liDescriptor1;
this.liDescriptor2 = liDescriptor2;
this.maSimilarity = maSimilarity;
this.singleList = singleList;
this.queueScore = queueScore;
calculatedSimilarities = new AtomicLong();
}
public void run() {
while(!queueIndices.wereAllDataFetched()) {
Point p = queueIndices.pollData();
if(p == null) {
try {Thread.sleep(SLEEP_SHORT);} catch (InterruptedException e) {}
continue;
}
int indexX = p.x;
int indexY = p.y;
IIdentifiedObject idObj1 = null;
idObj1 = liDescriptor1.get(indexX);
IIdentifiedObject idObj2 = null;
idObj2 = liDescriptor2.get(indexY);
ScorePoint sp = new ScorePoint((int)idObj1.getId(), (int)idObj2.getId());
try {
double sc = iSimilarityCalculator.getSimilarity(idObj1.getData(), idObj2.getData());
if(sc
© 2015 - 2025 Weber Informatics LLC | Privacy Policy