com.actelion.research.calc.regression.linear.pls.PLSRegressionModelCalculator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of openchemlib Show documentation
Show all versions of openchemlib Show documentation
Open Source Chemistry Library
/*
* Copyright (c) 1997 - 2016
* Actelion Pharmaceuticals Ltd.
* Gewerbestrasse 16
* CH-4123 Allschwil, Switzerland
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of the the copyright holder nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.actelion.research.calc.regression.linear.pls;
import com.actelion.research.calc.Matrix;
import com.actelion.research.calc.regression.ARegressionMethod;
import com.actelion.research.calc.regression.ModelError;
import com.actelion.research.util.datamodel.ModelXYIndex;
/**
* PLSRegressionModelCalculator
* @author Modest von Korff
* @version 1.0
* Aug 14, 2015 MvK Start implementation
*/
public class PLSRegressionModelCalculator extends ARegressionMethod {
public static final int FACTORS = 15;
private SimPLS simPLS;
private Matrix B;
private Matrix Xvar;
private Matrix YHat;
private Matrix X, Y;
private Matrix XtrainPreprocessed;
private Matrix YtrainPreprocessed;
/**
*
*/
public PLSRegressionModelCalculator() {
setParameterRegressionMethod(new ParameterPLS(FACTORS));
}
public PLSRegressionModelCalculator(ParameterPLS parameterPLS) {
setParameterRegressionMethod(parameterPLS);
}
/**
* @param centerData the centerData to set
*/
public void setCenterData(boolean centerData) {
getParameter().setCenterData(centerData);
}
public void setFactors(int factors){
getParameter().setFactors(factors);
}
/**
*
* @param dataXYTrain
* @return Yhat from the train data
*/
public Matrix createModel(ModelXYIndex dataXYTrain){
X = dataXYTrain.X;
Y = dataXYTrain.Y;
XtrainPreprocessed = dataXYTrain.X;
YtrainPreprocessed = dataXYTrain.Y;
if(getParameter().isCenterData()){
XtrainPreprocessed = dataXYTrain.X.getCenteredMatrix();
YtrainPreprocessed = dataXYTrain.Y.getCenteredMatrix();
// System.out.println("Calculate PLS with centered data.");
} else {
// System.out.println("Calculate PLS with raw data.");
}
simPLS = new SimPLS();
simPLS.simPlsSave(XtrainPreprocessed, YtrainPreprocessed, getParameter().getFactors());
Matrix R = simPLS.getR();
if(R.cols() == 1 && R.rows() == 1 && R.get(0,0)==0){
System.out.println("RegressionModelCalculator R = 0.");
}
Matrix Q = simPLS.getQ();
B = R.multiply(false, true, Q);
Xvar = XtrainPreprocessed.getVarianceCols();
YHat = SimPLS.invLinReg_Yhat(B, X, dataXYTrain.X, Y);
return YHat;
}
/**
* With centering of Xtest with Xtrain.
* @param Xtest
* @return
*/
public Matrix calculateYHat(Matrix Xtest){
Matrix YHatTest = SimPLS.invLinReg_Yhat(B, X, Xtest, Y);
return YHatTest;
}
@Override
public double calculateYHat(double[] arrRow) {
Matrix YHatTest = SimPLS.invLinReg_Yhat(B, X, new Matrix(true, arrRow), Y);
return YHatTest.get(0,0);
}
public double calculateYHat(byte[] arrRow) {
Matrix YHatTest = SimPLS.invLinReg_Yhat(B, X, new Matrix(true, arrRow), Y);
return YHatTest.get(0,0);
}
public double calculateYHat(int[] arrRow) {
Matrix YHatTest = SimPLS.invLinReg_Yhat(B, X, new Matrix(true, arrRow), Y);
return YHatTest.get(0,0);
}
public Matrix calculateYHatWithoutDeCentering(Matrix Xtest){
Matrix YHatTest = SimPLS.invLinReg_Yhat(B, Xtest);
return YHatTest;
}
public ModelError calculateModelErrorTest(Matrix Xtest, Matrix Ytest){
Matrix YHatTest = SimPLS.invLinReg_Yhat(B, XtrainPreprocessed, Xtest, YtrainPreprocessed);
return ModelError.calculateError(Ytest, YHatTest);
}
/**
* @return the b
*/
public Matrix getB() {
return B;
}
/**
* @return the xvar
*/
public Matrix getXvar() {
return Xvar;
}
/**
* @return the yHat
*/
public Matrix getYHat() {
return YHat;
}
public Matrix getT(Matrix XPreprocessed) {
return simPLS.getT(XPreprocessed);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy